

January 16, 2023

Ms. Jamie Bernard-Drakey EPA Kansas Site Assessment Manager U.S. Environmental Protection Agency, Region 7 11201 Renner Boulevard Lenexa, Kansas 66219

Subject: Preliminary Assessment Report

Location 3: 1808 E. Kansas Avenue

Garden City Dry Cleaner Sites, Garden City, Kansas

EPA SEMS Identification No. KSN000720858

U.S. EPA Region 7, START 5, Contract No. 68HE0719D0001

Task Order No. 22F0114.002

Task Monitor: Jamie Bernard-Drakey, EPA Kansas Site Assessment Manager

Dear Ms. Bernard-Drakey:

Tetra Tech, Inc. submits the enclosed Preliminary Assessment report regarding the above-referenced site. If you have any questions or comments regarding this submittal, please contact the Project Manager at (816) 412-1771.

Sincerely,

Jenna Mead, RG

START Project Manager

Ted Faile, PG, CHMM START Program Manager

Enclosures

cc: Kirk Mammoliti, On-scene Coordinator

PRELIMINARY ASSESSMENT REPORT LOCATION 3: 1808 E. KANSAS AVENUE GARDEN CITY DRY CLEANER SITES GARDEN CITY, KANSAS

EPA SEMS ID - KSN000720858

Superfund Technical Assessment and Response Team (START) 5 Contract Contract No. 68HE0719D0001, Task Order 22F0114, Subtask 002

Prepared For:

U.S. Environmental Protection Agency Region 7 Superfund Division 11201 Renner Boulevard Lenexa, Kansas 66219

January 16, 2023

Prepared By:

Tetra Tech, Inc. 415 Oak Street Kansas City, Missouri 64106 (816) 412-1741

CONTENTS

Secti	<u>on</u>		<u>Page</u>
1.0	INTR	ODUCTION	1
2.0	SITE	DESCRIPTION	2
	2.1	SITE LOCATION AND DESCRIPTION	2
	2.2	SITE HISTORY	3
	2.3	GEOLOGY AND HYDROGEOLOGY	3
	2.4	PREVIOUS INVESTIGATIONS	5
	2.5	WASTE CHARACTERISTICS	6
		2.5.1 Tetrachloroethene	
		2.5.2 Trichloroethene	7
3.0	PREL	JMINARY ASSESSMENT ACTIVITIES	8
	3.1	DIRECT-PUSH TECHNOLOGY SOIL-GAS SAMPLING	
	3.2	TEMPORARY WELL SAMPLING	
	3.3	QUALITY CONTROL SAMPLES	10
4.0	ANAI	LYTICAL DATA SUMMARY	11
	4.1	SOIL-GAS SAMPLE RESULTS	
	4.2	GROUNDWATER SAMPLE RESULTS	
	4.3	QA/QC SAMPLE RESULTS	12
5.0	PATH	HWAY AND ENVIRONMENTAL HAZARD ASSESSMENT	13
	5.1	SOIL & SUBSURFACE INTRUSION EXPOSURE PATHWAY	
	5.2	GROUNDWATER MIGRATION PATHWAY	
	5.3	OTHER MIGRATION PATHWAYS	13
6.0	SUMI	MARY	14
7.0	REFE	RENCES	15

CONTENTS (Continued)

APPENDICES

Appen	<u>dix</u>
A	FIGURES
В	LOGBOOK
C	LABORATORY ANALYTICAL DATA FOR WO2200150 AND WO2200151
D	EXTERIOR SOIL-GAS RESULTS TABLE

Attachment

1 ENVIRONMENTAL JUSTICE REPORT

TABLES

Table		Page
1	DPT SOIL-GAS SAMPLE SUMMARY	9
2	DPT TEMPORARY WELL SAMPLE SUMMARY	10
3	VOLATILE ORGANIC COMPOUNDS IN SOIL-GAS SAMPLES	11

1.0 INTRODUCTION

The U.S. Environmental Protection Agency (EPA), Region 7, under authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA), tasked Tetra Tech, Inc., (Tetra Tech) to conduct Preliminary Assessments (PA) of five current or former dry cleaners in Garden City, Kansas (the City), under Superfund Technical Assessment and Response Team (START) 5 Contract Number 68HE0719D0001. This PA regards the active dry cleaner Location 3: 1808 E. Kansas Avenue site (the site), the location of Garden City Specialty Cleaners. Work commenced under Task Order (TO) 19F0065.005 and was completed under TO 22F0114.002.

Given the long history of dry cleaning operations at the site, a Pre-Comprehensive Environmental Response, Compensation, and Liability Act (Pre-CERCLA) Screening Assessment (PCS) of the site indicated potential for a release of volatile organic compounds (VOC) (most likely chlorinated solvents) to surface soil and groundwater. The site was entered into the Superfund Enterprise Management System (SEMS), with site identification number KSN000720858.

This PA accords with *Guidance for Performing Preliminary Assessments Under CERCLA* (EPA 1991). The purpose of the PA was to determine whether any threats to human health or the environment exist as a result of releases to soil and/or groundwater from current dry cleaners at the site.

PA tasks included:

- Review available files or databases and develop a Quality Assurance Project Plan (QAPP) for PA activities at five dry cleaning sites in the City.
- Collect soil-gas samples from easements near the dry cleaner by use of direct-push technology (DPT) equipment.
- Attempt to collect one downgradient DPT groundwater sample from top of groundwater at about 70 feet below ground surface (bgs).
- Assess threat(s), if any, posed to public health, welfare, or the environment, and determine if further investigation under CERCLA/SARA is warranted.

2.0 SITE DESCRIPTION

This section specifies the site location, describes geology and hydrogeology, provides available site history, and presents waste characteristics of possibly present contaminants at the site.

2.1 SITE LOCATION AND DESCRIPTION

Garden City is on the north bank of the Arkansas River (typically dry due to water diversion upstream) in Finney County, Kansas (see Appendix A, Figure 1). According to the 2020 census, Garden City had a population of 28,151 (U.S. Census Bureau 2022). Figure 2 shows the five dry cleaner sites included in the PA. The City is in southwestern Kansas within the High Plains Physiographic Province, about 60 miles north of Oklahoma and east of Colorado. Elevations in the City generally range from about 2,830 feet above mean sea level (AMSL) at the east to 2,850 feet AMSL at the west, and continue to increase proceeding farther west into the High Plains. Sandhills are present south of the Arkansas River, with elevations rising to about 2,900 feet AMSL. Most of downtown Garden City is within Sections 4 through 9 and 15 through 19 in Township 24 South (T24S), Range 32 West (R32W) and Sections 12 and 13 of T24S, R33W. The City appears on the 7.5-minute topographic quadrangle maps of East and West Garden City, Kansas (U.S. Geological Survey [USGS] 1983a, b). The Garden City Public Water Supply (PWS) provides potable water to the population; however, most of those residing outside of city limits obtain their water from community PWS systems, such as those for subdivisions and mobile home parks, Finney County Rural Water District (RWD) 1, or private domestic wells. Wheatfield Electric Cooperative (Wheatfield) PWS wells also provide water to Garden City and other PWSs. Two of Wheatfield's 18 wells are within Garden City (*The Kansas Life* 2018, Finney County RWD 1 2020). Most PWS wells produce groundwater from the High Plains (Ogallala) Aquifer or the Dakota (Maha) Aquifer, and are much deeper than private wells. Attachment 1 is the EPA Environmental Justice Report regarding the site area.

The site has the address of 1808 E. Kansas Avenue. The dry cleaner is in the western unit of a 6,480-square-foot strip shopping center on an approximately 0.52 acre parcel (see Appendix A, Figure 3). A Little Caesars Pizza shop is at the eastern end, and a tobacco shop is between. The owner of the dry cleaner also owns the shopping center. Global Positioning System (GPS) coordinates at the approximate center of the site are 37.97449 degrees (°) north latitude and 100.85005° west longitude. Kansas Avenue is a commercial corridor (Kansas Highway 156) with residential properties beyond. Several residential properties are across an alley, immediately south of this facility.

2.2 SITE HISTORY

The following paragraphs summarize PCS findings regarding the site (Tetra Tech 2021).

Location 3 at 1808 E. Kansas Avenue is the site of Garden City Specialty Cleaners, an active dry cleaner using tetrachloroethene (PCE) as a dry cleaning solvent (see Figure 3, Appendix A). The facility opened in 1991 and has been owned and operated by Quang Nguyen and his wife Julie Banh since that date. December 1991 Grand Opening advertisements in the *Garden City Telegram* indicate the use of "Perc" as the dry cleaning agent (NewspaperArchive 2021). The facility owners also own the building, which was constructed in 1976 (Finney County, Kansas 2021). Although use of the building prior to 1991 is unknown, commercial stores are believed to have occupied it.

Garden City Specialty Cleaners was registered with the Kansas Department of Health and Environment (KDHE) as a dry cleaner on February 23, 1996, and is listed as active.

2.3 GEOLOGY AND HYDROGEOLOGY

Garden City is on the north bank of the Arkansas River in central Finney County, Kansas. The Kansas geological map of the area indicates presence of Quaternary-aged (late Pleistocene and Holocene) alluvium along the Arkansas River, and most of Garden City overlies the alluvial aquifer. Sandhills (Quaternary dune sand) are south of the alluvial valley, and the High Plains tableland (Quaternary loess) is to the north—both overlying alluvial deposits and/or the Tertiary Ogallala Formation (Kansas Geological Survey [KGS] 2021a). The loess (windblown silt) is generally about 10-30 feet thick and overlies calcareous silt, sand, and gravel of the Ogallala Formation (U.S. Department of Agriculture [USDA] 1965). Older Cretaceous-aged rocks including the Niobrara Chalk, Carlile Shale, Greenhorn Limestone, and Graneros Shale outcrop in some of the deeper valleys in the County.

The alluvial deposits and the Ogallala Formation are part of the High Plains Aquifer, the principal aquifer of the County. Groundwater flow in the shallow alluvial aquifer generally is toward and with the river's flow to the east-southeast. Groundwater flow in the Ogallala Aquifer is generally east or east-southeast. The Cretaceous rocks of the Dakota Formation, Kiowa Formation, and Cheyenne Sandstone, which underlie the Graneros Shale, form the Dakota Aquifer—also called the Maha Aquifer—of the Great Plains Aquifer System. Groundwater flow in the Dakota Aquifer is northeast toward its discharge area in north-central Kansas (KGS 2014). Pumping wells may influence local groundwater flow directions.

The City is situated on soils classified as the Las clay loam that develop on loamy alluvium over sandy and gravelly alluvium. These are deep to moderately deep soils having 0- to 1-percent slope that are

occasionally flooded. Most soils south of the Arkansas River have developed on eolian sands; north of the City, soils have developed on loess (USDA 2021).

The KGS registered water wells interactive map indicates that some domestic or domestic lawn and garden wells are within the City. Domestic wells in the City appear to be about 150-350 feet deep, and domestic lawn and garden wells generally are less than 150 feet deep; static water levels (SWL) are between about 40 and 85 feet bgs. Depths of monitoring wells appear to range from about 39 to 70 feet bgs, and have SWLs of about 31 to 55 feet bgs (KGS 2021b). START reviewed Kansas water well completion records for shallow aquifer monitoring wells in the City dating from about 2015-2020 to estimate current depth to groundwater. Many of these wells were drilled to 70 feet bgs, and screened from 60-70 feet bgs. Groundwater typically was encountered during drilling at between about 46 and 50 feet bgs. SWLs were approximately 44 feet bgs.

Drillers' logs indicate that 0-15 feet of clay may overlie alluvial sands, silts, and gravels to about 40 to 60 feet bgs, where silty or sandy clay occurs. Some caliche beds also have been reported in the deeper sandy to silty clay around 60-70 feet bgs (KGS 2021b). According to documents available through the KDHE Environmental Interest Finder website, some monitoring wells have been decommissioned and replaced with deeper wells because water levels had dropped below their screened intervals (KDHE 2022). Information provided in a 2005 KDHE interoffice memorandum for the nearby Garden City Volatile Organic Compound (VOC) site indicate that alluvial deposits are present to about 50-60 feet bgs where undifferentiated Pleistocene and Ogallala deposits were encountered. These deeper deposits reportedly have increased amounts of groundwater (KDHE 2022).

Well records indicate that several domestic or domestic lawn and garden wells may be within about 0.5 mile of a current or former dry cleaning facility; however, the well records may not have been sufficiently accurate to correctly identify their locations. Moreover, private wells inside the City may no longer be in service. SWLs of these wells ranged from about 22 to 65 feet bgs, and well depths ranged between 65 and 250 feet bgs. Notably, older SWLs may not represent current conditions due to aquifer depletion or drought causing water levels to drop.

The City PWS provides 68 percent of the water supplied to a population of 26,408 from groundwater supplied by 12 active wells (five wells are inactive). The remaining 32 percent is from groundwater purchased from the Wheatland Electric Cooperative (Kansas Drinking Water Watch 2021). Seven of the Garden City PWS wells are in the sandhills south of the City. Five active and five inactive wells are inside city limits. Three wells are listed as inactive/emergency wells, and two are listed as inactive/non-PWS

wells (Kansas Drinking Water Watch 2021). Three wells (including one inactive/emergency well) produce groundwater from sandstones of the Cretaceous Dakota Aquifer, and the other 14 wells produce groundwater from the Ogallala sands and gravels of the High Plains Aquifer. A driller's log for a 1984 PWS well in the central portion of the City describes alternating sands and clays to about 270 feet bgs, then Cretaceous clays/shales, and then limestones to total depth of 660 feet bgs. It notes that groundwater is produced from the Dakota sandstone at 560-657 feet bgs, and specifies an SWL of 122 feet bgs. In contrast, High Plains Aquifer PWS wells generally are about 300-350 feet bgs, but have similar SWLs of 120 feet bgs (KGS 2021b).

Numerous oil and gas wells are in the Garden City area. Gas wells generally produce from the Permian Chase Group at depths of about 2,500 feet bgs, while oil production well depths appear to have total depths of about 4,500 to 5,000 feet bgs and terminate in Pennsylvanian and Mississippian rocks (KGS 2021c).

2.4 PREVIOUS INVESTIGATIONS

A Kansas Dry Cleaner Inventory prepared by START in 2020 identified about 18 facilities in Garden City directories where dry cleaning operations likely had occurred (Tetra Tech 2020). START reviewed available information regarding these dry cleaning facilities, eliminated those investigated by KDHE, and selected five sites for a PCS. Selection of these five sites was based primarily on dry cleaners there having operated for at least a 10-year period between approximately 1950 and 2000. During that 50-year period, PCE was commonly used as a dry cleaning solvent, but regulations regarding proper disposal of waste PCE were not in effect or facility owners might not have been fully familiar with regulatory compliance. Facilities known to use PCE, including coin-operated dry cleaning facilities, were included in the PCS even if they had operated for fewer than 10 years (Tetra Tech 2021). Dry cleaning sites previously investigated were excluded from the PCS.

In 2021, Tetra Tech START conducted a PCS of five dry cleaner sites in Garden City, including this location. START's tasks included (1) reviewing existing or relevant documents regarding those sites, and (2) completing a PCS Checklist/ Decision Form for each site. The PCS included a pathway evaluation of the sites that covered groundwater migration, surface water migration, soil exposure, and air migration. The PCS indicated that a release of VOCs (possibly chlorinated solvents) to surface soil and groundwater may have occurred, given the historical dry cleaning operations at those sites. These findings indicated that further CERCLA assessment was warranted at the five selected sites (Tetra Tech 2021).

In 2021, START reviewed online KDHE files pertaining to the City. Four dry cleaners in the City were

registered with the State of Kansas as regulated dry cleaners and identified on KDHE's Environmental

Interest Finder website (KDHE 2022).

Kansas Registered Dry Cleaners

Garden City Specialty Cleaners: 1808 E. Kansas Avenue

Raley's (closed): 801 N. Main Street

Streeter Cleaners: 628 N. 8th Street

Stroh Cleaners: 2501 Fleming Street

Three of these were in business: Streeter Cleaners, Stroh Cleaners, and Garden City Specialty Cleaners.

The fourth, Raleys Quality Cleaner (801 N. Main Street), closed about 2003.

KDHE's list of sites with Dry Cleaner Program environmental activity shows Stroh Cleaners as "active" in

this State program. Two additional dry cleaner sites are also on the Dry Cleaner Program list. Garden

City Laundry is identified as "active" in the State environmental program, and Penny (sic)/Stroh Cleaners

is listed as "resolved." These three dry cleaners are on the Kansas Identified Site List (ISL) and identified

on the Kansas Interest Finder website (KDHE 2022).

KDHE Dry Cleaner Environmental Program Site

Garden City Laundry: 410 N. 8th Street

Stroh Cleaners: 2501 Fleming Street

Penney/Strohs: 110 N. Main Street

The Kansas Interest Finder website indicates that Penney/Strohs (110 N. Main Street) and Garden City

Laundry (410 N. 8th Street) are considered sources for a commingled groundwater plume. Also listed on

the ISL is Garden City VOC site near E. Fulton Avenue and Anderson Street, which likely is associated

with dry cleaning at the former Garden City Uniform and Linen Rental. These sites were excluded from

the 2021 PCS based on previous investigations (Tetra Tech 2021). The 2021 PCS report includes brief

summaries of investigations at these known sites and PWS wells that had been impacted by contaminants

(Tetra Tech 2021). Contamination associated with these known sites is unlikely to have impacted the

areas investigated under this TO.

Two PWS wells are within 1 mile of Garden City Specialty Cleaners of at 1808 E. Kansas Avenue.

6

2.5 WASTE CHARACTERISTICS

This section discusses waste characteristics of possibly present contaminants at the site.

X903022F0114.002

2.5.1 Tetrachloroethene

The common dry-cleaning solvent PCE was not used in the United States until 1934; however, petroleum solvents and carbon tetrachloride were in use as dry-cleaning solvents in the early 1900s. By 1948, PCE had replaced carbon tetrachloride as the major chlorinated dry-cleaning solvent used in the United States (petroleum solvents still dominated overall). By 1962, dry cleaning operations accounted for 90 percent of the PCE used in the United States (State Coalition for Remediation of Drycleaners [SCRD] 2007). Under the right subsurface conditions (i.e., minimal oxygen or reducing conditions), PCE will degrade to trichloroethene (TCE) and other chlorinated compounds. PCE has low to moderate mobility in soil and may leach slowly to groundwater. Its solubility in groundwater is slight (0.15 grams per liter) at 25 degrees Celsius (°C), and its specific gravity is 1.62 (Agency for Toxic Substances and Disease Registry [ATSDR] 2019a). PCE tends to accumulate on top of—or adsorb in—low-permeability material such as clay or shale. PCE may accumulate downgradient at greater depths on top of, or within these low permeability strata, resulting in secondary sources that gradually diffuse into groundwater.

2.5.2 Trichloroethene

TCE is a nonflammable chlorinated solvent, a colorless liquid that quickly evaporates in air and has a somewhat sweet odor and a sweet, burning taste. TCE was introduced as a dry cleaning solvent in the United States in 1930 (SCRD 2007). Many dry cleaning operations during the early-late 1900s used TCE. In addition to dry cleaning, TCE has been used mainly as a solvent to remove grease from metal parts and as a precursor chemical in industry (ATSDR 2019b). It is also an ingredient in adhesives, paint removers, typewriter correction fluids, and spot removers. TCE is not found naturally in the environment. However, it has been found in underground water sources and many surface waters as a result of manufacture, use, and disposal of the chemical (ATSDR 2019b).

Under chemically reducing conditions, TCE degrades to *cis* and *trans* isomers of 1,2-dichloroethene (DCE), and to 1,1-DCE and 1,1-dichloroethane (DCA). These daughter products may degrade to vinyl chloride; however, this process is more difficult, and often degradation of TCE stalls at DCE. TCE has low to moderate mobility in soil and may leach slowly to groundwater. Its solubility in groundwater is low (1 gram per liter at 25 °C), and its specific gravity is 1.46. Like PCE, TCE may accumulate in low permeability zones downgradient of the original source or become trapped on top of low permeability strata. However, because its solubility is higher, it will be found in highly transmissible strata, like sands and gravels.

3.0 PRELIMINARY ASSESSMENT ACTIVITIES

This section discusses PA activities at the site during July 10-12, 2022. All five Garden City locations were investigated during this time period, and all samples were submitted for analysis as a single project. Three or four soil-gas samples were collected at each site. Groundwater samples were collected within about 50 to 80 feet bgs at the three southern locations, but groundwater was not present above the equipment refusal depths of 72-87 feet at the two northern locations. Unless otherwise noted in this report, sampling and analytical procedures followed standard operating procedures (SOP) specified in the approved, site-specific QAPP (Tetra Tech 2022). Information recorded in the field logbook for each sample collected during the PA included property ownership, sample location, depth, and collection date and time. This information was included with the analyses to be performed on an electronic work sheet for submittal with the samples to the EPA Region 7 laboratory. Sample locations were recorded on a map, and coordinates were determined from georeferenced aerial photographs of the site. All samples were collected within City easements as permitted by the City.

After sample collection, each sample collected under Work Orders (WO) 2200150 (soil gas) and 2200151 (groundwater) was labeled and packaged accordingly. Groundwater samples, where collected, were to be placed in an iced cooler and maintained at a temperature at or below 4 °C pending delivery to the laboratory. The field logbook is in Appendix B. A copy of the chain-of-custody form is with the EPA Region 7 laboratory analytical data package in Appendix C. Sampling information provided in the electronic worksheet is included in the data package. Samples were hand-delivered to the EPA Region 7 laboratory in Kansas City, Kansas, on July 13, 2022.

3.1 DIRECT-PUSH TECHNOLOGY SOIL-GAS SAMPLING

Soil-gas samples were collected to assess possible vapor intrusion (VI) into nearby buildings or residences. Using a DPT rig, START advanced borings at four locations along the City alley immediately south of the site as close to the footprint of the dry cleaners building as possible (see Figure 3 in Appendix A). At each sampling location, steel rods were driven to the sampling depth (8 feet bgs), the rods were pulled back to provide a void space of approximately 6 inches, and disposable polyethylene tubing was secured to the bottom of the rod string. Ambient air in the tubing was purged from the tubing by use of a vacuum pump, and then the upper end of the tubing was connected to an evacuated Summa® canister. Using a pressure gauge, START measured vacuum pressure in the Summa canister before sample collection (and after). A valve on the canister was opened, and the canister filled with soil-gas vapors. Samples were collected over about 30-60 seconds, ending when the final vacuum pressure reached less than -5 inches of mercury.

Figure 3 in Appendix A shows the sampling locations at the site. Samples were analyzed for VOCs at the EPA Region 7 laboratory according to EPA Region 7 SOP 3230.04.

Table 1 summarizes soil-gas samples collected.

TABLE 1

DPT SOIL-GAS SAMPLE SUMMARY LOCATION 3: 1808 E. KANSAS AVENUE GARDEN CITY, KANSAS

EPA Sample		Comple	Comple	Geograph	ic Location
Number	Sample Name	Sample Date	Sample Time	North	West
Number		Date	Time	Latitude	Longitude
2200150-16	Location 3, SG1		11:30	37.974354	100.850062
2200150-17	Location 3, SG2	7/12/2022	11:45	37.974351	100.849957
2200150-18	Location 3, SG3	7/12/2022	12:00	37.974349	100.849846
2200150-19	Location 3, SG4		12:10	37.974347	100.849739

Notes:

DPT Direct-push technology

EPA U.S. Environmental Protection Agency

SG Soil-gas

After completion of sampling activities, all DPT boreholes were plugged with bentonite from bottom of hole to ground surface. Any disturbance to surface pavement was patched with appropriate material.

3.2 TEMPORARY WELL SAMPLING

START attempted to determine top of groundwater and collect a groundwater sample about 150 feet southeast (downgradient) of the site. Equipment refusal occurred at 72 feet bgs, and no groundwater was recovered within 68-72 feet bgs.

Table 2 summarizes groundwater sampling attempted at the site, and the location appears on Figure 3.

TABLE 2

DPT TEMPORARY WELL SAMPLE SUMMARY LOCATION 3: 1808 E. KANSAS AVENUE GARDEN CITY, KANSAS

	Sampling	Refusal		Geograph	ic Location
Temporary Well Number	Depth Attempted (ft bgs)	Depth (ft bgs)	Sampling Date	North Latitude	West Longitude
GW1	68-72 (Dry)	72	7/12/22	37.974202	100.849519

Notes:

DPT Direct-push technology ft bgs Feet below ground surface

3.3 QUALITY CONTROL SAMPLES

One equipment rinsate blank (2200151-09), one field blank (2200151-10), and one trip blank (2200151-11) were collected as a part of the sampling quality assurance (QA)/ quality control (QC) process for all five dry cleaner sites. These samples were submitted to the EPA Region 7 laboratory for VOC analysis as part of WO 2200151.

4.0 ANALYTICAL DATA SUMMARY

START submitted soil-gas samples from all five dry cleaner sites and groundwater samples from the three southern dry cleaner sites (no groundwater samples from the site) to the EPA Region 7 laboratory for analyses for VOCs. The analytical data packages for WO 2200150 (19 soil-gas samples) and WO 2200151 (eight groundwater and three QC samples) are in Appendix C. These data packages include analytical results from all five dry cleaner sites. Appendix D is a table comparing all exterior soil-gas results to residential and commercial Vapor Intrusion Screening Levels (VISL) for this location.

4.1 SOIL-GAS SAMPLE RESULTS

Soil-gas sample results were compared to EPA's Region 7 VISL for exterior soil-gas (EPA 2022a).

The chlorinated VOC PCE, commonly associated with dry cleaners, was detected at 270 micrograms per cubic meter ($\mu g/m^3$) in sample SG1, near the southwest corner of the dry cleaner at the site. This concentration exceeds the exterior soil-gas VISL for a residential setting. PCE concentrations in soil gas decreased progressing eastward along the alley to $18 \, \mu g/m^3$ near the east end of the strip mall building. Low levels (maximum $0.24 \, \mu g/m^3$) of TCE also were detected in the two samples collected closest to the dry cleaner. Table 3 lists VOCs detected in soil-gas samples from the site.

TABLE 3

VOLATILE ORGANIC COMPOUNDS IN SOIL-GAS SAMPLES
LOCATION 3: 1808 E. KANSAS AVENUE
GARDEN CITY, KANSAS

Sample	Comple Name	PCE	TCE	Benzene	Chloroform
Number	Sample Name		Concentratio	n (μg/m³)	
R7 VISL Exte	rior Soil Gas – Resident	140	6.7	100	41
R7 VISL Exte	erior Soil Gas – Worker	580	20	440	180
2200150-16	Location 3, SG1	270	0.24	6.2 J	23 J
2200150-17	Location 3, SG2	130	0.14	7.3 J	0.16
2200150-18	Location 3, SG3	70	ND (0.14)	2.2 J	0.13
2200150-19	Location 3, SG4	18	ND (0.14)	5.3 J	0.16

Notes:

Bold font indicates a value that exceeds EPA R7's residential (24-hour) VISL Reference: EPA R7 VI Guide August 8, 2022.

J	The reported value is an estimate	R7	Region 7
$\mu g/m^3$	Micrograms per cubic meter	SG	Soil-gas
ND	Not detected at detection limit in parentheses	TCE	Trichloroethene

PCE Tetrachloroethene VISL Vapor Intrusion Screening Level

4.2 GROUNDWATER SAMPLE RESULTS

No groundwater samples were collected at the site because groundwater was not encountered at or above the depth of equipment refusal at 72 feet bgs.

4.3 QA/QC SAMPLE RESULTS

No VOCs were detected in the rinsate, field blank, or trip blank.

5.0 PATHWAY AND ENVIRONMENTAL HAZARD ASSESSMENT

The following sections describe Hazard Ranking System (HRS) pathways and targets pertaining to the site.

5.1 SOIL & SUBSURFACE INTRUSION EXPOSURE PATHWAY

The soil exposure pathway accounts for risk from contamination within areas where people live, work, and attend school. The site is within a mixed commercial and residential part of the City. The closest residences are about 90-100 feet south or southeast (generally downgradient) of the site. Four soil-gas samples were collected at a City alley adjoining the south side of the site. All four contained detectable PCE, with 270 μ g/m³ of PCE in SG-1, which exceeded the exterior soil-gas VISL for a residential setting. Other than the unpaved alley adjoining its south, the site is covered with a building and asphalt parking lot. Based on the documented detections of PCE within soil gas, the subsurface vapor intrusion (VI) exposure pathway may pose a threat to public health.

5.2 GROUNDWATER MIGRATION PATHWAY

The groundwater exposure pathway cannot be evaluated because groundwater could not be sampled by use of DPT equipment; however, a release has occurred at the site that may have impacted groundwater.

5.3 OTHER MIGRATION PATHWAYS

Surface water and air migration pathways were not evaluated, and no samples of these media were collected because no indication of contamination along surface water or air pathways has been reported at the site.

6.0 SUMMARY

The site is at 1808 E. Kansas Avenue in Garden City, Kansas, and is at the western end of a strip shopping center situated on an approximately 0.52 acre parcel (see Appendix A, Figure 3). A dry cleaner at the site has operated since 1991 using PCE as the cleaning solvent.

On July 12, 2022, START collected four soil-gas samples at 8 feet bgs at four borings on a City alley adjoining the dry cleaner building at the site. START attempted to collect a downgradient groundwater sample; however, equipment refusal occurred at 72 feet bgs, and no groundwater was present above that depth.

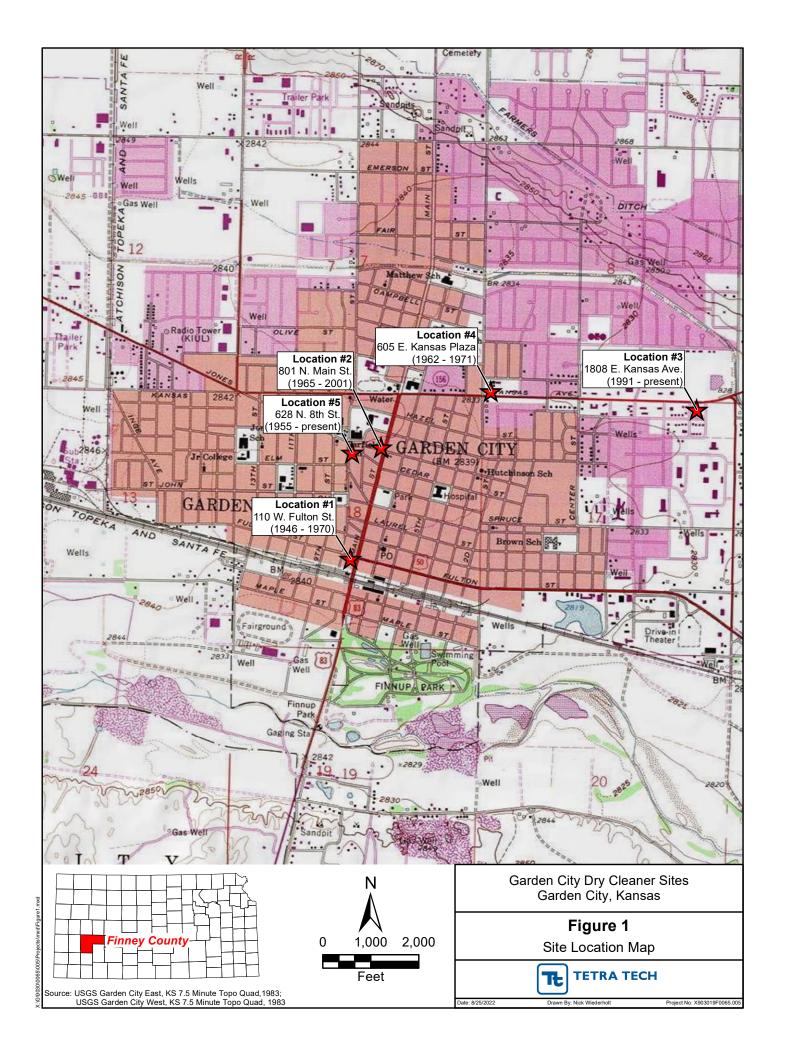
The chlorinated VOC PCE, commonly associated with dry cleaners, was detected at $270 \,\mu\text{g/m}^3$ in sample SG1, near the southwest corner of the dry cleaner building. This concentration exceeded the exterior soilgas VISL for a residential setting. PCE concentrations in the soil-gas decreased progressing eastward along the alley to $18 \,\mu\text{g/m}^3$ near the east end of the strip mall building. Low levels (maximum $0.24 \,\mu\text{g/m}^3$) of TCE also were detected in the two samples collected closest to the dry cleaner.

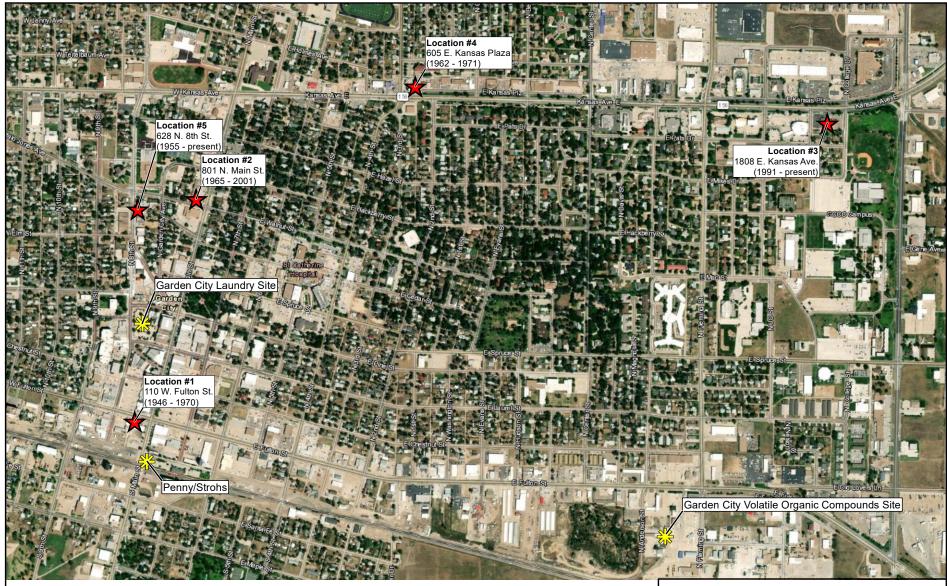
Detections of PCE in collected subsurface soil-gas samples indicate a release to soil and potentially to groundwater. Based on the proximity to nearby residences in the area, VOC contamination identified in soil-gas vapors could pose a threat of vapor intrusion. A CERCLA site inspection (SI) appears warranted.

Pre-remedial Considerations

Based on findings from this PA, current dry cleaning operations at the site appear to present a potential risk to human health and the environment. The scope of this assessment was limited to soil-gas sampling on the adjoining City alley south of the site. PCE was detected in soil gas, with concentration in one sample (SG-1) exceeding the residential VISL benchmark for exterior soil gas, suggesting that releases to the environment likely have impacted the site. Two residences are about 90-100 feet south of the SG-1 sample location.

It is recommended that this site be referred to the Kansas Dry Cleaner Program for further investigation to quantify possible PCE contamination associated with dry cleaning activities, specifically VI sampling within the strip mall and at nearby residences south of the dry cleaner. Soil samples also should be collected to delineate the PCE source area at the site.

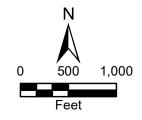

7.0 REFERENCES


- Agency for Toxic Substances and Disease Registry (ATSDR). 2019a. Toxic Profile for Tetrachloroethylene (PERC). https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=265&tid=48
- ATSDR. 2019b. Toxicological Profile for Trichloroethylene (TCE).

 Trichloroethylene (TCE) | Toxicological Profile | ATSDR (cdc.gov)
- Finney County, Kansas. 2021. Geographic Information System (GIS) Map.
 https://finneycountygis.maps.arcgis.com/apps/webappviewer/index.html?id=e65e4c7887c9453cbd
 https://finneycountygis.maps.arcgis.com/apps/webappviewer/index.html?id=e65e4c7887c9453cbd
 https://finneycountygis.maps.arcgis.com/apps/webappviewer/index.html?id=e65e4c7887c9453cbd
 https://finneycountygis.maps.arcgis.com/apps/webappviewer/index.html?id=e65e4c7887c9453cbd
 https://finneycountygis.maps.arcgis.com/apps/webappviewer/index.html?id=e65e4c7887c9453cbd
- Finney County Rural Water District (RWD) 1. 2020. Water Quality Report. https://fcrwd1.myruralwater.com/water-quality-report
- Kansas Department of Health and Environment (KDHE). 2022. Interest Finder Map. https://maps.kdhe.state.ks.us/keif/
- Kansas Drinking Water Watch. 2021. http://165.201.142.59:8080/DWW/KSindex.jsp
- Kansas Geological Survey (KGS). 2014. Water Resources, Dakota Aquifer. http://www.kgs.ku.edu/Publications/Bulletins/260/02 intro.html
- KGS. 2021a. KGS Geology, County Geologic Map for Finney County. http://www.kgs.ku.edu/General/Geology/County/def/finney.html
- KGS. 2021b. Map of water wells. https://maps.kgs.ku.edu/wwc5/
- KGS. 2021c. Kansas Oil and Gas. https://maps.kgs.ku.edu/oilgas/index.html
- *The Kansas Life.* 2018. "Finney RWD 1, Largest Rural Water System in Western Kansas." July. https://krwa.net/portals/krwa/lifeline/1807/Finney1.pdf
- NewspaperArchive. 2021. https://access-newspaperarchive-com.mcpl.idm.oclc.org/
- State Coalition for Remediation of Drycleaners (SCRD). 2007. *A Chronology of Historical Developments in Drycleaning*. November. http://www.drycleancoalition.org/download/drycleaning-historical_developments.pdf
- Tetra Tech, Inc. (Tetra Tech). 2020. Kansas Dry Cleaner Inventory Report. March 12.
- Tetra Tech. 2021. Pre-Comprehensive Environmental Response, Compensation, and Liability Act Site Screening Report, Five Dry Cleaner Sites, Garden City, Kansas. June 18.
- Tetra Tech. 2022. Quality Assurance Project Plan for Preliminary Assessments of Five Dry Cleaner Sites, Garden City, Kansas. May 3.
- U.S. Census Bureau. 2022. Quick Facts: Garden City, Kansas. https://www.census.gov/quickfacts/fact/table/gardencitycitykansas,US/PST045221

- U.S. Department of Agriculture (USDA). 1965. Soil Survey Finney County, Kansas. https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/kansas/finneyKS1965/finneyKS1965.pdf
- USDA. 2021. Web Soil Survey. https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
- U.S. Environmental Protection Agency (EPA). 1991. *Guidance for Performing Preliminary Assessments Under CERCLA*. EPA/540/G-91/013. September.
- EPA. 2022a. EPA Region 7 Vapor Intrusion Guide. August 8.
- EPA. 2022b. Superfund Chemical Data Matrix (SCDM) Query.
- U.S. Geological Survey (USGS). 1983a. 7.5-minute topographic map East Garden City, Kansas.
- USGS. 1983b. 7.5-minute topographic map West Garden City, Kansas.

APPENDIX A FIGURES


Legend

Dry cleaner location

Kansas identified sites list

Garden City Dry Cleaner Sites Garden City, Kansas

Figure 2

Site Layout Map

Date: 8/25/2022

Drawn By: Nick Wiederholt

Project No: X903019F0065.005

DPT groundwater sample attempt (dry)

Existing dry cleaning facility

Soil gas sample location

DPT Direct-push technology

Soil gas

60 Feet

Garden City Dry Cleaner Sites Garden City, Kansas

Figure 3 Location 3: 1808 E. Kansas Avenue Sample Location Map

Date: 8/18/2022

Drawn By: Nick Wiederholt

Project No: X903019F0065.005

DPT groundwater sample attempt (dry)

Soil gas sample location

Existing dry cleaning facility

DPT Direct-push technology

Tetrachloroethene

SG Soil gas

TCE Trichloroethene

μg/m³ Micrograms per cubic meter

VISL Vapor intrusion screening level

Note: Bold text indicates a result exceeding the residential VISL. 60 Feet

Garden City, Kansas

Figure 4
Location 3: 1808 E. Kansas Avenue Sample Results Map

Date: 8/18/2022

Drawn By: Nick Wiederholt

Project No: X903019F0065.005

Source: Kansas Data Access & Support Center, NG911 Imagery, 2018

APPENDIX B

LOGBOOK

DEFYING MOTHER NATURE

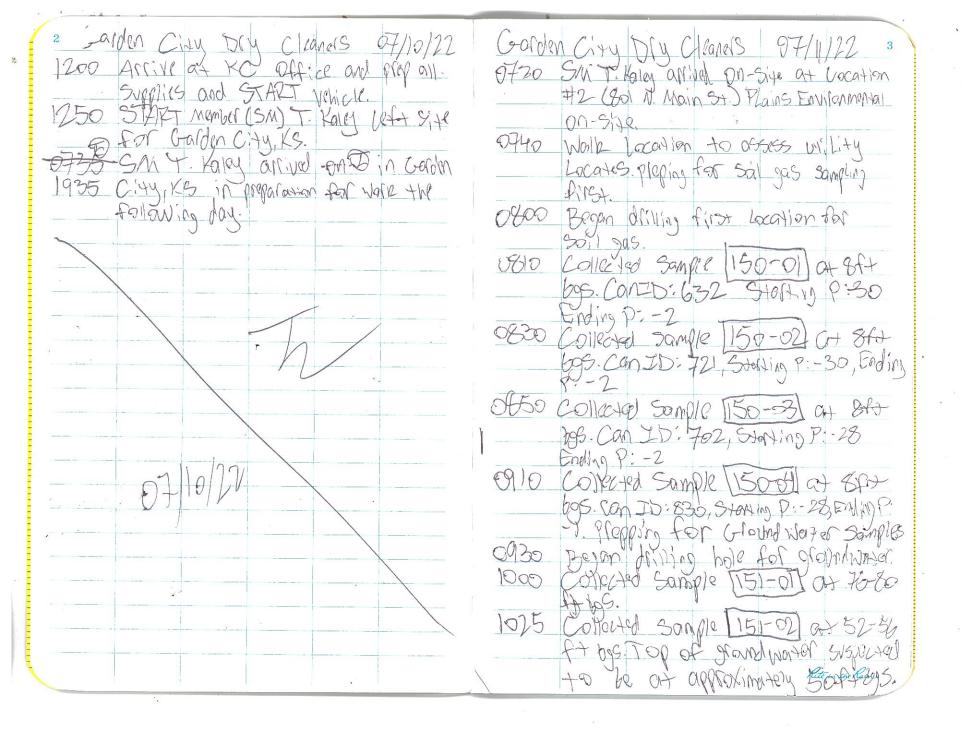
SINCE 1916

All components of this product are recyclable

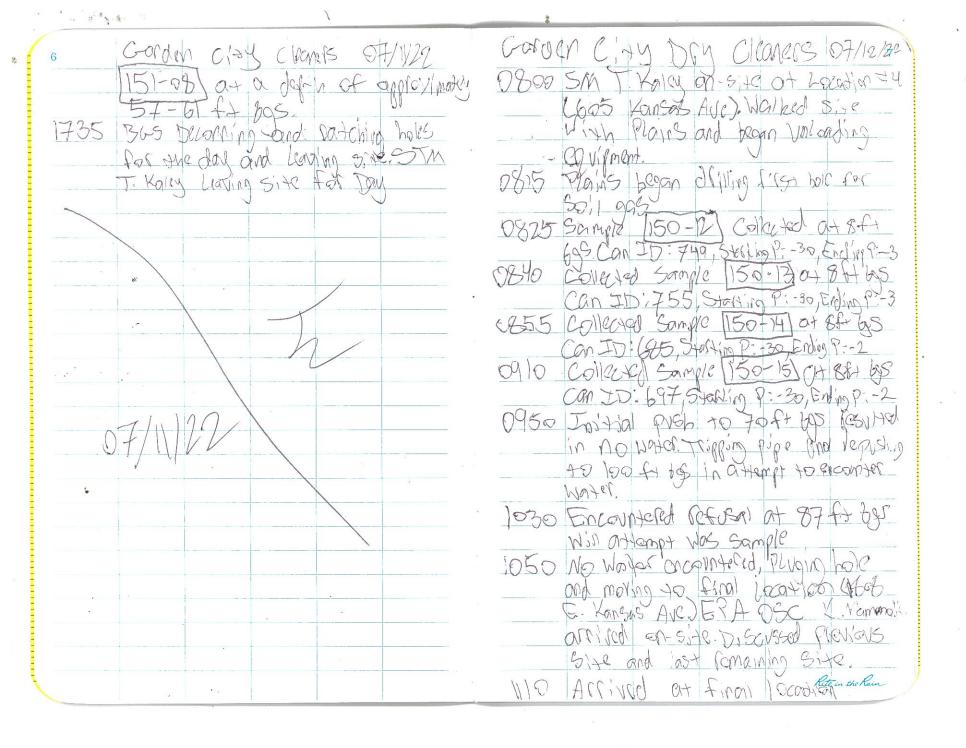
— Rite in the Rain —

A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather.

Using a pencil or all-weather pen, Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.


© 2022 JL DARLING LLC Tacoma, WA 98424-1017 USA www.RiteintheRain.com

> Item No. 311FX ISBN: 978-1-60134-183-9


Made in the USA US Pat No. 6,863,940

Gordon City Dry Clands 07/11/22 5 4 Garden Clay Dry Cleaners 07/11/22 1040 Finished at location 2 (80) N Main) the West was chateled winh Petocating around the corner to location underlying Utilities. After discussing WITH PIN J. Merd, three Soil 95 samples #5 (628 N Main) Will be collected along futon instead of two and the samples in the alley Located to Location 45 and begon drilling first hole for soil gos Will be abandoned Poss, bility of Samples-Collecting gloud water Sample along Fiton 1120 Collected Sample [150-05] at Eft Blo Can ID: 646, Swating P:- Do, Enling P:-1 1440 Began drilling first hole for so;)
and at Location. 1135 Covered Sample 150-56 CH SK 605 Can ID: God, Sterling 7: -29, Engling P: -1 1450 Collected Sample [150-09] at 8ft 696 150. CONCURCE Sample 150-07 9+ 89 645 Lan Di. 707, Sterling P: - 30 Ending Can JD: 744, SENIMP: 30, ENO P:-1 Collocated Somple 150 06 at 85+ 45 1505 CONELTO Sample (150-10) 9+8A+65 Can JD: 753, Storting P:-30, Ending P:-4 1525 Collected Sample (150-11) at 8++ Bys Can ID: 658, Storving P. -30, Ending P: 3 1205 Toda Lunch Break 1300 Began Dilling hole for slaw water. Con 16:661, Sharka P: -30, Ending P: -2 Original location was not acceptable, so Wed Same hole to begin diffing note Somple point was moved across street. 1600 CONCLARD Sample 151-05) OH a dopper 1335 Collected Comple M5/M5D [151-03] 1345 Conoched Sample (151-04) CH approximan of approximately 45-70ft bys. 1610 Collected Sample [151-04 of a depth of ayproximately 53-57 f+ bgs. 53-57 ft bos. 1400 Finished at Cozation #5 mobilizing 1720 Collected Sample 151-07 at applied. to Location # \$ (110 W. FUHAN) Upon Arrival to Location # 15 it 66-70 for 695. Wiss Witnessed that the allen to 1730 CONOCARD Sample Reto in circhain

8 Garden Cty Dly Creners 07/12/22	9
Walked Size and steppled for somples.	
1125 Years bear drilling the first hole	
The second secon	
1130 Collected Sample 150-161 at 8++ tos can ID: 649, Stockling P:-00, Endloop: -4	
1195 Colleted Samle 150-17/04 94 705	
Can IT: 819, Starting P: 28, Endin P: -2	
1200 Collected Somple 150 - Blot 967 bas	
(210 CONCUED Sample 150-19) at 54 bgs	
Can ID: 806, 5-2011/00 P: -30, Ending P: -3	
Con ID. 806, Sterning P: 30, Ending P: -3	
1245 Enconnered refusal at 72 ft 695.	
Will attempt 45 conect water if	
1255 No water covountered, Pluggian hole	
and plenting to Sample Right Right	
1310 Collected P; Fate Flood Sample 151-09) 1315 Collected Field Blook Sample 1540	
1330 Colleged Trip Blank Sample 151-11	
1355 Loaded Cempining equipment and deported	2 .
FOR KIL OFFICE	
1930 Arriva OH KC OFFICE	
07/12/29	
9111111	Rete in the Rain.

APPENDIX C LABORATORY ANALYTICAL DATA FOR WO2200150 AND WO2200151

v. 1.12

United States Environmental Protection Agency Region 7 300 Minnesota Avenue Kansas City, KS 66101

Date: 08/08/2022

Subject: Transmittal of Sample Analysis Results for WO#: 2200150

Project ID: JBDGCDC

Project: Garden City Dry Cleaner sites

From: Margaret E.W. St. Germain, Chief

Laboratory Technology & Analysis Branch

Laboratory Services and Applied Sciences Division

To: Jamie Bernard-Drakey

R7 Superfund and Emergency Management

SEMD

Enclosed are the analytical data for the above-referenced Work Order[s] (WO) and Project. These results are based on samples as received at the Science and Technology Center. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please ensure that you file this electronic transmittal in your records management system. The Regional Laboratory will retain all the original documentation (e.g. COC[s], supporting files, etc.) according to our LSASD records management system. Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. The process of disposing of the samples for this WO will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Online Sample/Data Disposition and Customer Survey.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295 or email R7_STC_Helpline@epa.gov.

Table of Contents

Project Information	3
Samples in Report	3
Case Narratives - Analyses	5
Sample Results	6
Certified Analyses	63
Certifications	65
Qualifiers and Definitions	66
Units and Definitions	67
Exceptions List	68
Chain of Custody PDF	90

United States Environmental Protection Agency Region 7 300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: **SEMD**

Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Summary Information for the Project in this Report

Project Manager: Jamie Bernard-Drakey **Organization: SEMD**

Project ID: JBDGCDC

Project Description: Garden City Dry Cleaner sites

Location: Garden City State: Kansas Program: Superfund

Site Name: Multi-Site

Site ID: 07ZZ Site OU: 00 GPRA Code: 000DD2

Purpose: Site Preliminary Assessment **QAPP Number:** 2022102

Samples in this Report

Lab ID	Sample	Matrix	Date Sampled	Date Received
2200150-01	Location #2 SG 1	Air	07/11/2022 08:10	07/13/2022
2200150-02	Location #2 SG 2	Air	07/11/2022 08:30	07/13/2022
2200150-03	Location #2 SG 3	Air	07/11/2022 08:50	07/13/2022
2200150-04	Location #2 SG 4	Air	07/11/2022 09:10	07/13/2022
2200150-05	Location #5 SG 1	Air	07/11/2022 11:20	07/13/2022
2200150-06	Location #5 SG 2	Air	07/11/2022 11:35	07/13/2022
2200150-07	Location #5 SG 3	Air	07/11/2022 11:50	07/13/2022
2200150-08	Location #5 SG 4	Air	07/11/2022 12:00	07/13/2022
2200150-09	Location #1 SG 1	Air	07/11/2022 14:50	07/13/2022
2200150-10	Location #1 SG 2	Air	07/11/2022 15:05	07/13/2022
2200150-11	Location #1 SG 3	Air	07/11/2022 15:25	07/13/2022
2200150-12	Location #4 SG 1	Air	07/12/2022 08:25	07/13/2022
2200150-13	Location #4 SG 2	Air	07/12/2022 08:40	07/13/2022
2200150-14	Location #4 SG 3	Air	07/12/2022 08:55	07/13/2022
2200150-15	Location #4 SG 4	Air	07/12/2022 09:10	07/13/2022
2200150-16	Location #3 SG 1	Air	07/12/2022 11:30	07/13/2022
2200150-17	Location #3 SG 2	Air	07/12/2022 11:45	07/13/2022
2200150-18	Location #3 SG 2	Air	07/12/2022 11:45	07/13/2022
2200150-19	Location #3 SG 2	Air	07/12/2022 11:45	07/13/2022

Additional Sample Information

Results as provided by the field sampler. No significant figure rules applied.

Lab ID	CANISTER ID	STARTING PRESSURE (inHg)	ENDING PRESSURE (inHg)
2200150-01	632	-30	-2
2200150-02	721	-30	- 2
2200150-03	702	-28	-2
2200150-04	830	-28	-1
2200150-05	686	-30	-1
2200150-06	666	- 29	-1
2200150-07	744	-30	-1

United States Environmental Protection Agency Region 7

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Additional Sample Information (Continued)

Results as provided by the field sampler. No significant figure rules applied.

	CANISTER ID	STARTING PRESSURE	ENDING PRESSURE
Lab ID		(inHg)	(inHg)
2200150-08	658	-30	-3
2200150-09	707	-30	-1
2200150-10	753	-30	-4
2200150-11	661	-30	-2
2200150-12	749	-30	-3
2200150-13	755	-30	-3
2200150-14	685	-30	-2
2200150-15	697	-30	-2
2200150-16	689	-30	-4
2200150-17	819	-28	-2
2200150-18	819	-28	-2
2200150-19	819	-28	-2

Reported:

United States Environmental Protection Agency Region 7 300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Project ID: JBDGCDC

Analysis Case Narrative

Air Volatiles

cis-1,3-Dichloropropene and trans-1,3-Dichloropropene were UJ-coded in all samples. Styrene was UJ-coded in samples 01, 02, 04-10, and 12-19. These analytes were not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to the initial instrument calibration curve not meeting linearity specifications. The actual reporting limit may be higher than the reported values.

Styrene was J-coded in samples 03 and 11. 1,2,4-Trimethylbenzene was J-coded in all samples. Although the analytes in question have been positively identified in the samples, the quantitation is an estimate (J-coded) due to the initial instrument calibration curve not meeting linearity and/or accuracy specifications.

The reporting limits have been raised for Cyclohexane (from 0.7 to 1.4) due to calibration problems at the low end of the curve.

Vinyl Acetate was J-coded in all samples. Although the analyte in question have been positively identified in the samples, the quantitation is an estimate (J-coded) due to high recovery (160%, upper limit 105%) of this analyte in the continuing calibration check and laboratory control sample. The actual concentration for these analytes may be lower than the reported values.

1,1,2,2-Tetrachloroethane was UJ-coded in all samples. Although the analyte in question was not found in the samples, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the continuing calibration check and laboratory control sample. The actual reporting limit for this analyte may be higher than the reported value.

Propene was J-coded in all samples except 18. Cyclohexane was J-coded in all samples except 07 and 08. Although the analytes in question have been positively identified in the samples, the quantitation is an estimate (J-coded) due to high recovery (126% and 119%, upper limit 111%, 112%, respectively) in the laboratory control samples. The actual concentration may be lower than the reported values.

Ethyl Acetate was J-coded in sample 16. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to high (126%, upper limit 115%) recovery in the laboratory control sample. The actual concentration may be lower than the reported value.

Hexane and Benzene were J-coded in all samples. Although the analytes in question have been positively identified in the samples, the quantitation is an estimate (J-coded) due to high (123% and 117%, upper limit 118%, 116%, respectively) recovery in the laboratory control sample. The actual concentration may be lower than the reported value.

Carbon Tetrachloride, Dibromochloromethane, Bromoform, and 1,3-Dichlorobenzene were UJ-coded in all samples. Although the analytes in question were not found in the samples, the reporting limit is an estimate (UJ-coded) due to low recovery (83%, 79%, 69%, 74%, respectively, with lower limits of 85%, 80%, 84%, and 76%, respectively) of these analytes in the laboratory control sample. The actual reporting limit for these analytes may be higher than the reported values.

Tetrachloroethene was J-coded in sample 15. Although the analyte in question has been positively identified in the sample, the quantitation is an estimate (J-coded) due to the reported value exceeding the calibrated range of the instrument.

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:
SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

Lab ID: 2200150-01

Sample ID: Location #2 SG 1 Matrix: Air Sampled: 07/11/22 08:10

Analyta	Qualifiers/		lle*	Date	Mathad	
Analyte	Result Comments	MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	2.1	1.0	ug/m3	07/25/2022	TO-15	
Chloromethane	4.3	0.42	ug/m3	07/25/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/25/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/25/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/25/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/25/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/25/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/25/2022	TO-15	
Acetone	31	0.96	ug/m3	07/25/2022	TO-15	
Trichlorofluoromethane	1.4	1.1	ug/m3	07/25/2022	TO-15	
2-Propanol	1.2	0.50	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/25/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/25/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/25/2022	TO-15	
Carbon Disulfide	1.4	0.63	ug/m3	07/25/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/25/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/25/2022	TO-15	
Vinyl Acetate	4.7 J	0.72	ug/m3	07/25/2022	TO-15	
2-Butanone	9.2	1.9	ug/m3	07/25/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/25/2022	TO-15	
Hexane	15 J	0.71	ug/m3	07/25/2022	TO-15	
Chloroform	2.8	0.12	ug/m3	07/25/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/25/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/25/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	
Benzene	4.2 J	0.16	ug/m3	07/25/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/25/2022	TO-15	
Cyclohexane	5.3 J	1.4	ug/m3	07/25/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/25/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/25/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/25/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/25/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/25/2022	TO-15	
Heptane	8.0	0.83	ug/m3	07/25/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/25/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	Page 6 of 9

WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-01 (Continued)

Jamie Bernard-Drakey

Sample ID: Location #2 SG 1 Matrix: Air Sampled: 07/11/22 08:10

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
Toluene	12		0.76	ug/m3	07/25/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/25/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/25/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/25/2022	TO-15	
Tetrachloroethene	23		0.34	ug/m3	07/25/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/25/2022	TO-15	
Ethyl Benzene	6.1		0.88	ug/m3	07/25/2022	TO-15	
m and/or p-Xylene	4.6		1.8	ug/m3	07/25/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/25/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/25/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/25/2022	TO-15	
o-Xylene	1.8		0.88	ug/m3	07/25/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/25/2022	TO-15	
1,3,5-Trimethylbenzene	1.1		0.99	ug/m3	07/25/2022	TO-15	
1,2,4-Trimethylbenzene	3.9	J	0.99	ug/m3	07/25/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/25/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/25/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/25/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/25/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-01

Sample ID: Location #2 SG 1 Matrix: Air Sampled: 07/11/22 08:10

	Qualifiers/			Date	
Analyte Result	Comments	MDL / RL	Units	Analyzed	Method

Volatile Organic Compounds by GCMS VOC 3230.04

Propene (Reshot)31 J
3.5 ug/m3 07/26/2022 TO-15

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-02

Sample ID: Location #2 SG 2 Matrix: Air Sampled: 07/11/22 08:30

Analyte	Qualifiers Result Comment		Units	Date Analyzed	Method	
•	Result Comment	3 PIDL/ KL	Office	Analyzea	Metriod	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	2.2	1.0	ug/m3	07/25/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/25/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/25/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/25/2022	TO-15	
1,3-Butadiene	5.7	0.45	ug/m3	07/25/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/25/2022	TO-15	
Chloroethane	0.56	0.53	ug/m3	07/25/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/25/2022	TO-15	
Trichlorofluoromethane	1.3	1.1	ug/m3	07/25/2022	TO-15	
2-Propanol	1.7	0.50	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/25/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/25/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/25/2022	TO-15	
Carbon Disulfide	1.4	0.63	ug/m3	07/25/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/25/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/25/2022	TO-15	
Vinyl Acetate	14 J	0.72	ug/m3	07/25/2022	TO-15	
2-Butanone	15	1.9	ug/m3	07/25/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/25/2022	TO-15	
Hexane	14 J	0.71	ug/m3	07/25/2022	TO-15	
Chloroform	0.12	0.12	ug/m3	07/25/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/25/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/25/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	
Benzene	3.9 J	0.16	ug/m3	07/25/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/25/2022	TO-15	
Cyclohexane	4.4 J	1.4	ug/m3	07/25/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/25/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/25/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/25/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/25/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/25/2022	TO-15	
Heptane	6.5	0.83	ug/m3	07/25/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/25/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	
Toluene	12	0.76	ug/m3	07/25/2022	TO-15	Page 9 of 9

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-02 (Continued)

Sample ID: Location #2 SG 2 Matrix: Air Sampled: 07/11/22 08:30

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
2-Hexanone	ND		1.7	ug/m3	07/25/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/25/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/25/2022	TO-15	
Tetrachloroethene	8.3		0.34	ug/m3	07/25/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/25/2022	TO-15	
Ethyl Benzene	7.6		0.88	ug/m3	07/25/2022	TO-15	
m and/or p-Xylene	4.3		1.8	ug/m3	07/25/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/25/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/25/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/25/2022	TO-15	
o-Xylene	1.7		0.88	ug/m3	07/25/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/25/2022	TO-15	
1,3,5-Trimethylbenzene	1.1		0.99	ug/m3	07/25/2022	TO-15	
1,2,4-Trimethylbenzene	4.1	J	0.99	ug/m3	07/25/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/25/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/25/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/25/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/25/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-02

Sample ID: Location #2 SG 2 Matrix: Air Sampled: 07/11/22 08:30

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS						VOC 3230.04
Propene (Reshot)	70 J	3.5	ug/m3	07/26/2022	TO-15	
Acetone (Reshot)	47	9.6	ug/m3	07/26/2022	TO-15	

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-03

Sample ID: Location #2 SG 3 Matrix: Air Sampled: 07/11/22 08:50

	Qualifiers/			Date		
Analyte	Result Comments	MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	2.0	1.0	ug/m3	07/25/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/25/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/25/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/25/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/25/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/25/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/25/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/25/2022	TO-15	
Trichlorofluoromethane	1.3	1.1	ug/m3	07/25/2022	TO-15	
2-Propanol	2.1	0.50	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/25/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/25/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/25/2022	TO-15	
Carbon Disulfide	2.0	0.63	ug/m3	07/25/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/25/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/25/2022	TO-15	
Vinyl Acetate	14 J	0.72	ug/m3	07/25/2022	TO-15	
2-Butanone	20	1.9	ug/m3	07/25/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/25/2022	TO-15	
Hexane	36 J	0.71	ug/m3	07/25/2022	TO-15	
Chloroform	0.47	0.12	ug/m3	07/25/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/25/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/25/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	
Benzene	9.3 J	0.16	ug/m3	07/25/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/25/2022	TO-15	
Cyclohexane	12 J	1.4	ug/m3	07/25/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/25/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/25/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/25/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/25/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/25/2022	TO-15	
Heptane	17	0.83	ug/m3	07/25/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/25/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	
Toluene	30	0.76	ug/m3	07/25/2022	TO-15	Page 12 of

ood immicsota Avenue Runsus Oity

Jamie Bernard-Drakey WO#: 2200150
R7 Superfund and Emergency Management Project ID: JBDGCDC

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Froject. Garden City Dry Cleaner sites

Sample Results (Continued)

Lab ID: 2200150-03 (Continued)

Sample ID: Location #2 SG 3 Matrix: Air Sampled: 07/11/22 08:50

		Qualifiers/			Date		
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
2-Hexanone	ND		1.7	ug/m3	07/25/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/25/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/25/2022	TO-15	
Tetrachloroethene	7.5		0.34	ug/m3	07/25/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/25/2022	TO-15	
Ethyl Benzene	18		0.88	ug/m3	07/25/2022	TO-15	
m and/or p-Xylene	9.1		1.8	ug/m3	07/25/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/25/2022	TO-15	
Styrene	1.1	J	0.86	ug/m3	07/25/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/25/2022	TO-15	
o-Xylene	3.5		0.88	ug/m3	07/25/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/25/2022	TO-15	
1,3,5-Trimethylbenzene	2.3		0.99	ug/m3	07/25/2022	TO-15	
1,2,4-Trimethylbenzene	6.9 .	J	0.99	ug/m3	07/25/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/25/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/25/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/25/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/25/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-03

Sample ID: Location #2 SG 3 Matrix: Air Sampled: 07/11/22 08:50

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS							VOC 3230.04
Propene (Reshot)	69 .	J	3.5	ug/m3	07/26/2022	TO-15	
Acetone (Reshot)	67		9.6	ug/m3	07/26/2022	TO-15	

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-04

Sample ID: Location #2 SG 4 Matrix: Air Sampled: 07/11/22 09:10

		Qualifiers/			Date		
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS							VOC 3230.0
Propene	29]	0.35	ug/m3	07/25/2022	TO-15	
Dichlorodifluoromethane	2.1		1.0	ug/m3	07/25/2022	TO-15	
Chloromethane	ND		0.42	ug/m3	07/25/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND		1.4	ug/m3	07/25/2022	TO-15	
Vinyl Chloride	ND		0.13	ug/m3	07/25/2022	TO-15	
1,3-Butadiene	ND		0.45	ug/m3	07/25/2022	TO-15	
Bromomethane	ND		0.78	ug/m3	07/25/2022	TO-15	
Chloroethane	ND		0.53	ug/m3	07/25/2022	TO-15	
Vinyl Bromide	ND		0.88	ug/m3	07/25/2022	TO-15	
Acetone	24		0.96	ug/m3	07/25/2022	TO-15	
Trichlorofluoromethane	1.3		1.1	ug/m3	07/25/2022	TO-15	
2-Propanol	0.96		0.50	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
Methylene Chloride	ND		0.70	ug/m3	07/25/2022	TO-15	
Allyl Chloride	ND		0.32	ug/m3	07/25/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND		1.5	ug/m3	07/25/2022	TO-15	
Carbon Disulfide	0.74		0.63	ug/m3	07/25/2022	TO-15	
trans-1,2-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethane	ND		0.82	ug/m3	07/25/2022	TO-15	
Methyl tert-butyl ether	ND		0.73	ug/m3	07/25/2022	TO-15	
Vinyl Acetate	4.1	J	0.72	ug/m3	07/25/2022	TO-15	
2-Butanone	6.9		1.9	ug/m3	07/25/2022	TO-15	
cis-1,2-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
Ethyl Acetate	ND		1.1	ug/m3	07/25/2022	TO-15	
Hexane	8.4]	0.71	ug/m3	07/25/2022	TO-15	
Chloroform	0.85		0.12	ug/m3	07/25/2022	TO-15	
Tetrahydrofuran	ND		0.60	ug/m3	07/25/2022	TO-15	
1,2-Dichloroethane	ND		0.10	ug/m3	07/25/2022	TO-15	
1,1,1-Trichloroethane	ND		1.1	ug/m3	07/25/2022	TO-15	
Benzene	2.1]	0.16	ug/m3	07/25/2022	TO-15	
Carbon Tetrachloride	ND I	נט	0.32	ug/m3	07/25/2022	TO-15	
Cyclohexane	2.8]	1.4	ug/m3	07/25/2022	TO-15	
1,2-Dichloropropane	ND		0.93	ug/m3	07/25/2022	TO-15	
Bromodichloromethane	ND		1.4	ug/m3	07/25/2022	TO-15	
1,4-Dioxane	ND		0.73	ug/m3	07/25/2022	TO-15	
Trichloroethene	ND		0.14	ug/m3	07/25/2022	TO-15	
2,2,4-Trimethylpentane	ND		1.0	ug/m3	07/25/2022	TO-15	
Heptane	3.6		0.83	ug/m3	07/25/2022	TO-15	
cis-1,3-Dichloropropene	ND I	נט	0.46	ug/m3	07/25/2022	TO-15	
4-Methyl-2-Pentanone	ND		1.7	ug/m3	07/25/2022	TO-15	
trans-1,3-Dichloropropene	ND I	ın	0.46	ug/m3	07/25/2022	TO-15	Page 15 of

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-04 (Continued)

07/11/22 09:10 Sample ID: Location #2 SG 4 Sampled: Matrix: Аіг

And to	D	Qualifiers/	MDI / D:	11-2-	Date		
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
1,1,2-Trichloroethane	ND		1.1	ug/m3	07/25/2022	TO-15	
Toluene	7.3		0.76	ug/m3	07/25/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/25/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/25/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/25/2022	TO-15	
Tetrachloroethene	7.2		0.34	ug/m3	07/25/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/25/2022	TO-15	
Ethyl Benzene	4.0		0.88	ug/m3	07/25/2022	TO-15	
m and/or p-Xylene	3.6		1.8	ug/m3	07/25/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/25/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/25/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ .	1.4	ug/m3	07/25/2022	TO-15	
o-Xylene	1.3		0.88	ug/m3	07/25/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/25/2022	TO-15	
1,3,5-Trimethylbenzene	ND		0.99	ug/m3	07/25/2022	TO-15	
1,2,4-Trimethylbenzene	4.2	J	0.99	ug/m3	07/25/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/25/2022	TO-15	
1,3-Dichlorobenzene	ND	U J	1.2	ug/m3	07/25/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/25/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/25/2022	TO-15	

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-05

Sample ID: Location #5 SG 1 Matrix: Air Sampled: 07/11/22 11:20

Analys	B	Qualifiers/	MDL / DI	11-2-	Date	Mask - 3	
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS							VOC 3230.0
Dichlorodifluoromethane	2.0		1.0	ug/m3	07/25/2022	TO-15	
Chloromethane	ND		0.42	ug/m3	07/25/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND		1.4	ug/m3	07/25/2022	TO-15	
Vinyl Chloride	ND		0.13	ug/m3	07/25/2022	TO-15	
1,3-Butadiene	ND		0.45	ug/m3	07/25/2022	TO-15	
Bromomethane	ND		0.78	ug/m3	07/25/2022	TO-15	
Chloroethane	ND		0.53	ug/m3	07/25/2022	TO-15	
Vinyl Bromide	ND		0.88	ug/m3	07/25/2022	TO-15	
Acetone	44		0.96	ug/m3	07/25/2022	TO-15	
Trichlorofluoromethane	1.5		1.1	ug/m3	07/25/2022	TO-15	
2-Propanol	1.8		0.50	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
Methylene Chloride	ND		0.70	ug/m3	07/25/2022	TO-15	
Allyl Chloride	0.96		0.32	ug/m3	07/25/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND		1.5	ug/m3	07/25/2022	TO-15	
Carbon Disulfide	1.1		0.63	ug/m3	07/25/2022	TO-15	
trans-1,2-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethane	ND		0.82	ug/m3	07/25/2022	TO-15	
Methyl tert-butyl ether	ND		0.73	ug/m3	07/25/2022	TO-15	
Vinyl Acetate	8.2 J]	0.72	ug/m3	07/25/2022	TO-15	
2-Butanone	14		1.9	ug/m3	07/25/2022	TO-15	
cis-1,2-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
Ethyl Acetate	ND		1.1	ug/m3	07/25/2022	TO-15	
Hexane	8.1 3	J	0.71	ug/m3	07/25/2022	TO-15	
Chloroform	13		0.12	ug/m3	07/25/2022	TO-15	
Tetrahydrofuran	ND		0.60	ug/m3	07/25/2022	TO-15	
1,2-Dichloroethane	ND		0.10	ug/m3	07/25/2022	TO-15	
1,1,1-Trichloroethane	ND		1.1	ug/m3	07/25/2022	TO-15	
Benzene	3.3 J	J	0.16	ug/m3	07/25/2022	TO-15	
Carbon Tetrachloride	ND U	נע	0.32	ug/m3	07/25/2022	TO-15	
Cyclohexane	2.8 3	J	1.4	ug/m3	07/25/2022	TO-15	
1,2-Dichloropropane	ND		0.93	ug/m3	07/25/2022	TO-15	
Bromodichloromethane	ND		1.4	ug/m3	07/25/2022	TO-15	
1,4-Dioxane	ND		0.73	ug/m3	07/25/2022	TO-15	
Trichloroethene	ND		0.14	ug/m3	07/25/2022	TO-15	
2,2,4-Trimethylpentane	ND		1.0	ug/m3	07/25/2022	TO-15	
Heptane	4.2		0.83	ug/m3	07/25/2022	TO-15	
cis-1,3-Dichloropropene	ND U	נע	0.46	ug/m3	07/25/2022	TO-15	
4-Methyl-2-Pentanone	ND		1.7	ug/m3	07/25/2022	TO-15	
trans-1,3-Dichloropropene	ND U	נע	0.46	ug/m3	07/25/2022	TO-15	
1,1,2-Trichloroethane	ND		1.1	ug/m3	07/25/2022	TO-15	Page 17 of 9

WO#: 2200150 R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-05 (Continued)

Jamie Bernard-Drakey

Sample ID: Location #5 SG 1 Sampled: 07/11/22 11:20 Matrix: Аіг

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
Toluene	7.7		0.76	ug/m3	07/25/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/25/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/25/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/25/2022	TO-15	
Tetrachloroethene	34		0.34	ug/m3	07/25/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/25/2022	TO-15	
Ethyl Benzene	3.7		0.88	ug/m3	07/25/2022	TO-15	
m and/or p-Xylene	3.6		1.8	ug/m3	07/25/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/25/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/25/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/25/2022	TO-15	
o-Xylene	1.4		0.88	ug/m3	07/25/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/25/2022	TO-15	
1,3,5-Trimethylbenzene	ND		0.99	ug/m3	07/25/2022	TO-15	
1,2,4-Trimethylbenzene	3.8	J	0.99	ug/m3	07/25/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/25/2022	TO-15	
1,3-Dichlorobenzene	ND	U J	1.2	ug/m3	07/25/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/25/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/25/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-05

Sample ID: Location #5 SG 1 Matrix: Air Sampled: 07/11/22 11:20

		Qualifiers/			Date	
Analyte Resu	ult	Comments	MDL / RL	Units	Analyzed	Method

Volatile Organic Compounds by GCMS VOC 3230.04

Propene (Reshot)34 J 3.5 ug/m3 07/26/2022 TO-15

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-06

Sample ID: Location #5 SG 2 Matrix: Air Sampled: 07/11/22 11:35

Applies	Qualifi		11	Date	Na - 41 .	
Analyte	Result Comm	ents MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	1.8	1.0	ug/m3	07/25/2022	TO-15	
Chloromethane	0.99	0.42	ug/m3	07/25/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/25/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/25/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/25/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/25/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/25/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/25/2022	TO-15	
Acetone	40	0.96	ug/m3	07/25/2022	TO-15	
Trichlorofluoromethane	1.5	1.1	ug/m3	07/25/2022	TO-15	
2-Propanol	1.8	0.50	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/25/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/25/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/25/2022	TO-15	
Carbon Disulfide	ND	0.63	ug/m3	07/25/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/25/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/25/2022	TO-15	
Vinyl Acetate	7.7 J	0.72	ug/m3	07/25/2022	TO-15	
2-Butanone	14	1.9	ug/m3	07/25/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/25/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/25/2022	TO-15	
Hexane	7.7 J	0.71	ug/m3	07/25/2022	TO-15	
Chloroform	0.12	0.12	ug/m3	07/25/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/25/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/25/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	
Benzene	3.5 J	0.16	ug/m3	07/25/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/25/2022	TO-15	
Cyclohexane	2.2 J	1.4	ug/m3	07/25/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/25/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/25/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/25/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/25/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/25/2022	TO-15	
Heptane	3.3	0.83	ug/m3	07/25/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/25/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/25/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/25/2022	TO-15	Page 20 of 9

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-06 (Continued)

Sample ID: Location #5 SG 2 Sampled: 07/11/22 11:35 Matrix: Аіг

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
Toluene	6.8		0.76	ug/m3	07/25/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/25/2022	TO-15	
Dibromochloromethane	ND	uj	1.7	ug/m3	07/25/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/25/2022	TO-15	
Tetrachloroethene	53		0.34	ug/m3	07/25/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/25/2022	TO-15	
Ethyl Benzene	2.8		0.88	ug/m3	07/25/2022	TO-15	
m and/or p-Xylene	3.6		1.8	ug/m3	07/25/2022	TO-15	
Bromoform	ND	IJ	2.1	ug/m3	07/25/2022	TO-15	
Styrene	ND	IJ	0.86	ug/m3	07/25/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	IJ	1.4	ug/m3	07/25/2022	TO-15	
o-Xylene	1.5		0.88	ug/m3	07/25/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/25/2022	TO-15	
1,3,5-Trimethylbenzene	1.1		0.99	ug/m3	07/25/2022	TO-15	
1,2,4-Trimethylbenzene	4.6	J	0.99	ug/m3	07/25/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/25/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/25/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/25/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/25/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-06

Sample ID: Location #5 SG 2 Matrix: Air Sampled: 07/11/22 11:35

		Qualifiers/			Date	
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method

Volatile Organic Compounds by GCMS VOC 3230.04

Propene (Reshot) 64 J 3.5 ug/m3 07/26/2022 TO-15

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-07

Sample ID: Location #5 SG 3 Matrix: Air Sampled: 07/11/22 11:50

Acclide		Qualifiers/	MDI (P.		Date		
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS							VOC 3230.0
Propene	24 J	1	0.35	ug/m3	07/25/2022	TO-15	
Dichlorodifluoromethane	2.1		1.0	ug/m3	07/25/2022	TO-15	
Chloromethane	0.52		0.42	ug/m3	07/25/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND		1.4	ug/m3	07/25/2022	TO-15	
Vinyl Chloride	ND		0.13	ug/m3	07/25/2022	TO-15	
1,3-Butadiene	ND		0.45	ug/m3	07/25/2022	TO-15	
Bromomethane	ND		0.78	ug/m3	07/25/2022	TO-15	
Chloroethane	ND		0.53	ug/m3	07/25/2022	TO-15	
Vinyl Bromide	ND		0.88	ug/m3	07/25/2022	TO-15	
Acetone	33		0.96	ug/m3	07/25/2022	TO-15	
Trichlorofluoromethane	1.4		1.1	ug/m3	07/25/2022	TO-15	
2-Propanol	1.2		0.50	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
Methylene Chloride	ND		0.70	ug/m3	07/25/2022	TO-15	
Allyl Chloride	ND		0.32	ug/m3	07/25/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND		1.5	ug/m3	07/25/2022	TO-15	
Carbon Disulfide	ND		0.63	ug/m3	07/25/2022	TO-15	
trans-1,2-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
1,1-Dichloroethane	ND		0.82	ug/m3	07/25/2022	TO-15	
Methyl tert-butyl ether	ND		0.73	ug/m3	07/25/2022	TO-15	
Vinyl Acetate	4.5 3	l	0.72	ug/m3	07/25/2022	TO-15	
2-Butanone	8.6		1.9	ug/m3	07/25/2022	TO-15	
cis-1,2-Dichloroethene	ND		0.20	ug/m3	07/25/2022	TO-15	
Ethyl Acetate	ND		1.1	ug/m3	07/25/2022	TO-15	
Hexane	3.1 3	l	0.71	ug/m3	07/25/2022	TO-15	
Chloroform	ND		0.12	ug/m3	07/25/2022	TO-15	
Tetrahydrofuran	ND		0.60	ug/m3	07/25/2022	TO-15	
1,2-Dichloroethane	ND		0.10	ug/m3	07/25/2022	TO-15	
1,1,1-Trichloroethane	ND		1.1	ug/m3	07/25/2022	TO-15	
Benzene	1.6 J	1	0.16	ug/m3	07/25/2022	TO-15	
Carbon Tetrachloride	ND U	נע	0.32	ug/m3	07/25/2022	TO-15	
Cyclohexane	ND		1.4	ug/m3	07/25/2022	TO-15	
1,2-Dichloropropane	ND		0.93	ug/m3	07/25/2022	TO-15	
Bromodichloromethane	ND		1.4	ug/m3	07/25/2022	TO-15	
1,4-Dioxane	ND		0.73	ug/m3	07/25/2022	TO-15	
Trichloroethene	ND		0.14	ug/m3	07/25/2022	TO-15	
2,2,4-Trimethylpentane	ND		1.0	ug/m3	07/25/2022	TO-15	
Heptane	1.4		0.83	ug/m3	07/25/2022	TO-15	
cis-1,3-Dichloropropene	ND U	נע	0.46	ug/m3	07/25/2022	TO-15	
4-Methyl-2-Pentanone	ND		1.7	ug/m3	07/25/2022	TO-15	
trans-1,3-Dichloropropene	ND U	17	0.46	ug/m3	07/25/2022	TO-15	Page 23 of 9

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: 08/08/2022 08:55

Project: Garden City Dry Cleaner sites

Sample Results

(Continued)

Lab ID: 2200150-07 (Continued)

Sample ID: 07/11/22 11:50 Location #5 SG 3 Sampled: Matrix: Аіг

		0!:6/			D-1-		
Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
olatile Organic Compounds by GCMS (Continued)							VOC 3230.04
1,1,2-Trichloroethane	ND		1.1	ug/m3	07/25/2022	TO-15	
Toluene	3.5		0.76	ug/m3	07/25/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/25/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/25/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/25/2022	TO-15	
Tetrachloroethene	19		0.34	ug/m3	07/25/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/25/2022	TO-15	
Ethyl Benzene	1.4		0.88	ug/m3	07/25/2022	TO-15	
m and/or p-Xylene	2.6		1.8	ug/m3	07/25/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/25/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/25/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/25/2022	TO-15	
o-Xylene	1.1		0.88	ug/m3	07/25/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/25/2022	TO-15	
1,3,5-Trimethylbenzene	ND		0.99	ug/m3	07/25/2022	TO-15	
1,2,4-Trimethylbenzene	3.9	J	0.99	ug/m3	07/25/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/25/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/25/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/25/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/25/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/25/2022	TO-15	

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-08

Sample ID: Location #5 SG 4 Matrix: Air Sampled: 07/11/22 12:00

		Qualifiers/			Date		
Analyte	Result (Comments	MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS							VOC 3230.0
Propene	22 J		0.35	ug/m3	07/26/2022	TO-15	
Dichlorodifluoromethane	1.8		1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND		0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND		1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND		0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND		0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND		0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND		0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND		0.88	ug/m3	07/26/2022	TO-15	
Acetone	46		0.96	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	1.6		1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	2.2		0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND		0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND		0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND		0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND		1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	0.71		0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND		0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND		0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND		0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	11 J		0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	14		1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND		0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND		1.1	ug/m3	07/26/2022	TO-15	
Hexane	2.8 J		0.71	ug/m3	07/26/2022	TO-15	
Chloroform	5.2		0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND		0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND		0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND		1.1	ug/m3	07/26/2022	TO-15	
Benzene	2.7 J		0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ		0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	ND		1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND		0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND		1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND		0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	ND		0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND		1.0	ug/m3	07/26/2022	TO-15	
Heptane	2.1		0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ		0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND		1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ		0.46	ug/m3	07/26/2022	TO-15	Page 25 of

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-08 (Continued)

Sample ID: Location #5 SG 4 Matrix: Air Sampled: 07/11/22 12:00

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
1,1,2-Trichloroethane	ND		1.1	ug/m3	07/26/2022	TO-15	
Toluene	5.0		0.76	ug/m3	07/26/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ .	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Tetrachloroethene	9.5		0.34	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	1.3		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	3.3		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	1.4		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	ND		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	4.0	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: SEMD

Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-09

Sample ID: Location #1 SG 1 07/11/22 14:50 Matrix: Аіг Sampled:

	Qualifiers			Date		
Analyte	Result Comment	s MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	38	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	3.3	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	1.8	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	1.4	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	9.9 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	9.9	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	8.1 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.18	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	3.7 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	2.8 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	4.9	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Toluene	6.4	0.76	ug/m3	07/26/2022	TO-15	Page 27 of

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-09 (Continued)

07/11/22 14:50 Sample ID: Location #1 SG 1 Sampled: Matrix: Аіг

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
2-Hexanone	ND		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Tetrachloroethene	30		0.34	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	1.2		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	4.8		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	UJ CU	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	UJ CU	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ CU	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	1.9		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	1.3		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	5.5	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-09

Sample ID: Location #1 SG 1 Matrix: Air Sampled: 07/11/22 14:50

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS						VOC 3230.04
Propene (Reshot)	32 J	3.5	ug/m3	07/26/2022	TO-15	
Acetone (Reshot)	67	9.6	ug/m3	07/26/2022	TO-15	

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: SEMD 08/08/2022 08:55

Project: Garden City Dry Cleaner sites

Sample Results (Continued)

Lab ID: 2200150-10

Sample ID: Location #1 SG 2 07/11/22 15:05 Matrix: Аіг Sampled:

Analida	Qualifier	•		Date		
Analyte	Result Commen	ts MDL/RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	38	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Acetone	30	0.96	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	3.6	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	1.5	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	1.3	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	8.6 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	9.1	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	8.5 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.52	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	4.4 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	3.1 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	5.0	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	Page 30 of

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-10 (Continued)

Sample ID: Location #1 SG 2 Matrix: Air Sampled: 07/11/22 15:05

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
Toluene	9.0		0.76	ug/m3	07/26/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Tetrachloroethene	34		0.34	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	1.8		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	6.8		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	2.8		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	1.9		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	8.9	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-10

Sample ID: Location #1 SG 2 Matrix: Air Sampled: 07/11/22 15:05

Analyte Result Comments			
relate Chinese	MDL / RL Unit	s Analyzed	Method

Volatile Organic Compounds by GCMS VOC 3230.04

Propene (Reshot) 35 J 3.5 ug/m3 07/26/2022 TO-15

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-11

Sample ID: Location #1 SG 3 Matrix: Air Sampled: 07/11/22 15:25

Appliedo	Qualifiers/	MDI / DI	l le be	Date	Math - J	
Analyte	Result Comments	MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	52	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Acetone	33	0.96	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	5.1	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	2.1	0.50	ug/m3	07/26/2022	TO-15	
l,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	0.85	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	1.5	0.63	ug/m3	07/26/2022	TO-15	
crans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	11 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	11	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	13 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.20	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	5.5 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	4.0 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	7.7	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	Page 33 of

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: 08/08/2022 08:55

Project: Garden City Dry Cleaner sites

Sample Results

(Continued)

Lab ID: 2200150-11 (Continued)

Sample ID: 07/11/22 15:25 Location #1 SG 3 Sampled: Matrix: Аіг

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
/olatile Organic Compounds by GCMS (Continued)					,		VOC 3230.04
Toluene	9.1		0.76	ug/m3	07/26/2022	TO-15	
2-Hexanone	2.0		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Tetrachloroethene	49		0.34	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	2.0		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	7.1		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	IJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	1.2	J	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	IJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	2.5		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	1.7		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	6.7	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	IJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-11

Sample ID: Location #1 SG 3 Matrix: Air Sampled: 07/11/22 15:25

Volatile Organic Compounds by GCMS VOC 3230.04

Propene (Reshot) 35 J 3.5 ug/m3 07/26/2022 TO-15

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: 08/08/2022 08:55

SEMD Project: Garden City Dry Cleaner sites

> **Sample Results** (Continued)

2200150-12 Lab ID:

Sample ID: Location #4 SG 1 07/12/22 08:25 Matrix: Аіг Sampled:

Analyte	Qualifiers/	MDL / RL	Heite	Date	Method	
Analyte	Result Comments	MDL / KL	Units	Analyzed	method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	3.8	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	6.5	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	18	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	ND	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	8.1 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	22	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	4.7 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.53	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	2.9 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	1.4 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	4.5	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	2.2	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Toluene	3.6	0.76	ug/m3	07/26/2022	TO-15	Page 36 of

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-12 (Continued)

Sample ID: Location #4 SG 1 Matrix: Air Sampled: 07/12/22 08:25

	Qualifiers/			Date			
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
2-Hexanone	ND		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	ND		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	2.7		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	1.2		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	ND		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	3.3	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-12

Sample ID: Location #4 SG 1 Matrix: Air Sampled: 07/12/22 08:25

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS						VOC 3230.04
Propene (Reshot)	36 J	7.0	ug/m3	07/26/2022	TO-15	
Acetone (Reshot)	77	19	ug/m3	07/26/2022	TO-15	

Reported:

United States Environmental Protection Agency Region 7

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

WO#: 2200150

Sample Results

(Continued)

Lab ID: 2200150-12

Sample ID: Location #4 SG 1 Matrix: Air Sampled: 07/12/22 08:25

Qualifiers/ Date
Analyte Result Comments MDL / RL Units Analyzed Method

Volatile Organic Compounds by GCMS VOC 3230.04

Tetrachloroethene (Reshot) 7400 34 ug/m3 07/27/2022 TO-15

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-13

Sample ID: Location #4 SG 2 Matrix: Air Sampled: 07/12/22 08:40

Analyte	Qualifie		11	Date		
Analyte	Result Comme	ents MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	2.8	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	4.0	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	2.0	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	1.3	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	14 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	23	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	37 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.19	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	7.2 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	13 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	1.9	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	19	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Toluene	32	0.76	ug/m3	07/26/2022	TO-15	Page 40 of 9

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-13 (Continued)

Sample ID: Location #4 SG 2 Matrix: Air Sampled: 07/12/22 08:40

		Qualifiers/			Date		
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
Volatile Organic Compounds by GCMS (Continu	ied)						VOC 3230.04
2-Hexanone	3.3		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND U	IJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	18		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	9.5		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND U	IJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND U	IJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND U	IJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	3.7		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	2.6		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	7.7 J		0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND U	IJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

WO#: 2200150

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC

SEMD Project: Garden City Dry Cleaner sites

Reported: 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-13

Sample ID: Location #4 SG 2 Matrix: Air Sampled: 07/12/22 08:40

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS						VOC 3230.04
Propene (Reshot)	71 J	7.0	ug/m3	07/27/2022	TO-15	
Acetone (Reshot)	71	19	ug/m3	07/27/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-13

Sample ID: Location #4 SG 2 Matrix: Air Sampled: 07/12/22 08:40

Qualifiers/ Date
Analyte Result Comments MDL / RL Units Analyzed Method

Volatile Organic Compounds by GCMS VOC 3230.04

Tetrachloroethene (Reshot) 6000 34 ug/m3 07/27/2022 TO-15

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: SEMD

Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Sample Results (Continued)

2200150-14 Lab ID:

Sample ID: Location #4 SG 3 07/12/22 08:55 Matrix: Аіг Sampled:

	Qualifiers/			Date		
Analyte	Result Comment	s MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	24	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	9.0	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	1.8	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	1.0	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	8.6 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	22	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	18 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	3.8	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	4.4 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	6.6 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	3.1	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	9.4	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Toluene	16	0.76	ug/m3	07/26/2022	TO-15	Page 44 of

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-14 (Continued)

Sample ID: Location #4 SG 3 Matrix: Sampled: 07/12/22 08:55 Аіг

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued))						VOC 3230.04
2-Hexanone	2.0		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	8.8		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	6.0		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	2.3		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	1.6		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	5.6	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

WO#: 2200150

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC

SEMD Project: Garden City Dry Cleaner sites

Reported: 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-14

Sample ID: Location #4 SG 3 Matrix: Air Sampled: 07/12/22 08:55

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS						VOC 3230.04
Propene (Reshot)	41 J	7.0	ug/m3	07/27/2022	TO-15	
Acetone (Reshot)	68	19	ug/m3	07/27/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-14

Sample ID: Location #4 SG 3 Matrix: Air Sampled: 07/12/22 08:55

Analyte Qualifiers/ Date

Result Comments MDL / RL Units Analyzed Method

Volatile Organic Compounds by GCMS VOC 3230.04

Tetrachloroethene (Reshot) 6500 34 ug/m3 07/27/2022 TO-15

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-15

Sample ID: Location #4 SG 4 Matrix: Air Sampled: 07/12/22 09:10

Analyte		Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
	Result	Commence	MDL / KL	Units	Analyzed	метноп	
olatile Organic Compounds by GCMS							VOC 3230.0
Dichlorodifluoromethane	18		1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND		0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND		1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND		0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND		0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND		0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND		0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND		0.88	ug/m3	07/26/2022	TO-15	
Acetone	42		0.96	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	8.3		1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	1.6		0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND		0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND		0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND		0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND		1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	0.87		0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND		0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND		0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND		0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	11 J		0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	13		1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND		0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND		1.1	ug/m3	07/26/2022	TO-15	
Hexane	16 J		0.71	ug/m3	07/26/2022	TO-15	
Chloroform	1.4		0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND		0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND		0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND		1.1	ug/m3	07/26/2022	TO-15	
Benzene	4.5 J		0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	l	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	5.8 J		1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND		0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND		1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND		0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	8.5		0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND		1.0	ug/m3	07/26/2022	TO-15	
Heptane	8.3		0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	l	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND		1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	l	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND		1.1	ug/m3	07/26/2022	TO-15	Page 48 of

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-15 (Continued)

Sample ID: Location #4 SG 4 Matrix: Air Sampled: 07/12/22 09:10

		Qualifiers/			Date		
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.04
Toluene	13		0.76	ug/m3	07/26/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	7.4		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	4.9		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	1.8		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	1.2		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	4.0	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-15

Sample ID: Location #4 SG 4 Matrix: Air Sampled: 07/12/22 09:10

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	

Volatile Organic Compounds by GCMS VOC 3230.04

Propene (Reshot)46 J 3.5 ug/m3 07/27/2022 TO-15

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-15

Sample ID: Location #4 SG 4 Matrix: Air Sampled: 07/12/22 09:10

Analyte Qualifiers/ Date

Result Comments MDL / RL Units Analyzed Method

Volatile Organic Compounds by GCMS VOC 3230.04

Tetrachloroethene (Reshot) 19000 J **34** ug/m3 07/27/2022 TO-15

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-16

Sample ID: Location #3 SG 1 Matrix: Air Sampled: 07/12/22 11:30

Analyte	Qua Result Con	lifiers/ nments MDL / RL	Units	Date Analyzed	Method	
/olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	1.7	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Acetone	41	0.96	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	1.3	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	2.1	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	1.3	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	15 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	12	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	1.9 J	1.1	ug/m3	07/26/2022	TO-15	
Hexane	23 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.20	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	6.2 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	8.3 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND S	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	0.24	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	12	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND 03	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND 03	1.1	=	07/26/2022		
T ₁ T ₁ E-111GHOLOGUIGHG	NU	1.1	ug/m3	0//20/2022	TO-15	Page 52 of 9

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-16 (Continued)

Sample ID: Location #3 SG 1 Matrix: Air Sampled: 07/12/22 11:30

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)			,		7.1.1.7.1.1		VOC 3230.04
Toluene	20		0.76	ug/m3	07/26/2022	TO-15	
2-Hexanone	2.5		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	11		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	6.6		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	UJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	UJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	2.6		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	2.0		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	6.9	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-16

Sample ID: Location #3 SG 1 Matrix: Air Sampled: 07/12/22 11:30

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS						VOC 3230.04
Propene (Reshot)	48 J	3.5	ug/m3	07/27/2022	TO-15	
Tetrachloroethene (Reshot)	270	3.4	ug/m3	07/27/2022	TO-15	

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: 08/08/2022 08:55

SEMD Project: Garden City Dry Cleaner sites

Sample Results (Continued)

Lab ID: 2200150-17

Sample ID: Location #3 SG 2 07/12/22 11:45 Matrix: Аіг Sampled:

Analyte	Qualifie Result Comme	•	Units	Date Analyzed	Method	
	Result Comme	ils MDL/KL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	1.8	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Acetone	38	0.96	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	1.2	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	2.0	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	1.3	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	1.3	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	9.2 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	11	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	26 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.16	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	7.3 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	8.8 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	0.14	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	13	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	Page 55 of

WO#: 2200150 R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-17 (Continued)

Jamie Bernard-Drakey

Sample ID: Location #3 SG 2 07/12/22 11:45 Sampled: Matrix: Аіг

		Qualifiers/			Date		
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method	
Volatile Organic Compounds by GCMS (Continued)							VOC 3230.04
Toluene	22		0.76	ug/m3	07/26/2022	TO-15	
2-Hexanone	ND		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Tetrachloroethene	130		0.34	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	11		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	8.1		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND	IJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND	IJ	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND	IJ	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	3.2		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	2.3		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	8.0	J	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND	IJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-17

Sample ID: Location #3 SG 2 Matrix: Air Sampled: 07/12/22 11:45

		Qualifiers/			Date	
Analyte	Result	Comments	MDL / RL	Units	Analyzed	Method

Volatile Organic Compounds by GCMS VOC 3230.04

Propene (Reshot) 60 J 3.5 ug/m3 07/27/2022 TO-15

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-18

Sample ID: Location #3 SG 2 07/12/22 11:45 Matrix: Аіг Sampled:

Analyto	Qualifie Pasult Commo	•	Hoite	Date	Mathad	
Analyte	Result Comme	nts MDL / RL	Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Propene	ND	0.35	ug/m3	07/26/2022	TO-15	
Dichlorodifluoromethane	1.7	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Acetone	24	0.96	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	1.3	1.1	ug/m3	07/26/2022	TO-15	
2-Propanol	1.4	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	ND	0.32	ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	ug/m3	07/26/2022	TO-15	
Carbon Disulfide	ND	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	5.8 J	0.72	ug/m3	07/26/2022	TO-15	
2-Butanone	6.6	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	ug/m3	07/26/2022	TO-15	
Hexane	8.0 J	0.71	ug/m3	07/26/2022	TO-15	
Chloroform	0.13	0.12	ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	ug/m3	07/26/2022	TO-15	
Benzene	2.2 J	0.16	ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	ug/m3	07/26/2022	TO-15	
Cyclohexane	2.8 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	ug/m3	07/26/2022	TO-15	
Trichloroethene	ND	0.14	ug/m3	07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	ug/m3	07/26/2022	TO-15	
Heptane	4.0	0.83	ug/m3	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	ug/m3	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	ug/m3	07/26/2022	TO-15	Page 58 of

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-18 (Continued)

Sample ID: Location #3 SG 2 Sampled: 07/12/22 11:45 Matrix: Аіг

Analyte								
Volatile Organic Compounds by GCMS (Continued)	Analyte	Result	Qualifiers/ Comments	MDI / RI	Units	Date Analyzed	Method	
1,1,2-Trichloroethane	·	ROSUIL	Commence	FIDE / RE	Onics	Andryzod	rictiod	VOC 3230.04
Toluene 9.0 0.76 ug/m3 07/26/2022 TO-15 2-Hexanone ND 1.7 ug/m3 07/26/2022 TO-15 Dibromochloromethane ND UJ 1.7 ug/m3 07/26/2022 TO-15 1,2-Dibromoethane ND 1.6 ug/m3 07/26/2022 TO-15 Tetrachloroethene 70 0.34 ug/m3 07/26/2022 TO-15 Chlorobenzene ND 0.93 ug/m3 07/26/2022 TO-15 Ethyl Benzene 4.1 0.88 ug/m3 07/26/2022 TO-15 Bromoform 3.9 1.8 ug/m3 07/26/2022 TO-15 Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 6-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethylboluene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethylboluene 1.4 0.99 ug/m3 07/26/2022 TO-15								
2-Hexanone ND 1.7 ug/m3 07/26/2022 TO-15 Dibromochloromethane ND UJ 1.7 ug/m3 07/26/2022 TO-15 1,2-Dibromoethane ND UJ 1.6 ug/m3 07/26/2022 TO-15 Tetrachloroethene 70 0.34 ug/m3 07/26/2022 TO-15 Chlorobenzene ND UJ 0.93 ug/m3 07/26/2022 TO-15 Ethyl Benzene 4.1 0.88 ug/m3 07/26/2022 TO-15 Bromoform 3.9 1.8 ug/m3 07/26/2022 TO-15 Styrene ND UJ 1.4 ug/m3 07/26/2022 TO-15 Styrene ND UJ 1.4 ug/m3 07/26/2022 TO-15 4-Ethyltoluene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2-Dichlo	• •							
Dibromochloromethane ND UJ 1.7 ug/m3 07/26/2022 TO-15 1,2-Dibromoethane ND UJ 1.6 ug/m3 07/26/2022 TO-15 1,2-Dibromoethane 70 0.34 ug/m3 07/26/2022 TO-15 1,2-Dibromoethane ND UJ 0.93 ug/m3 07/26/2022 TO-15 1,2-Dibromoethane ND UJ 0.88 ug/m3 07/26/2022 TO-15 1,1-Dibromoethane ND UJ 0.88 ug/m3 07/26/2022 TO-15 1,1-Dibromoethane ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1-Dibromoethane ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1-Dibromoethane ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1-Dibromoethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 1,2-Dibromoethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 1,3-S-Trimethylbenzene ND UJ 0.99 ug/m3 07/26/2022 TO-15 1,2-A-Trimethylbenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND UJ 1.2 ug/m3	Toluene	9.0		0.76	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane ND 1.6 ug/m3 07/26/2022 TO-15 Tetrachloroethene 70 0.34 ug/m3 07/26/2022 TO-15 Chlorobenzene ND 0.93 ug/m3 07/26/2022 TO-15 Ethyl Benzene 4.1 0.88 ug/m3 07/26/2022 TO-15 Bromoform 3.9 1.8 ug/m3 07/26/2022 TO-15 Bromoform ND UJ 2.1 ug/m3 07/26/2022 TO-15 Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1,2,2-Tetrachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 4-Ethyltoluene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 4.2 ug/m3 07/26/2022 TO-15	2-Hexanone	ND		1.7	ug/m3	07/26/2022	TO-15	
Tetrachloroethene 70 0.34 ug/m3 07/26/2022 TO-15 Chlorobenzene ND 0.93 ug/m3 07/26/2022 TO-15 Ethyl Benzene 4.1 0.88 ug/m3 07/26/2022 TO-15 m and/or p-Xylene 3.9 1.8 ug/m3 07/26/2022 TO-15 Bromoform ND UJ 2.1 ug/m3 07/26/2022 TO-15 Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1,2,2-Tetrachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 e-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene ND 0.9 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND 0.9 ug/m3 07/26/2022 TO-15	Dibromochloromethane	ND	UJ	1.7	ug/m3	07/26/2022	TO-15	
Chlorobenzene ND 0.93 ug/m3 07/26/2022 TO-15 Ethyl Benzene 4.1 0.88 ug/m3 07/26/2022 TO-15 m and/or p-Xylene 3.9 1.8 ug/m3 07/26/2022 TO-15 Bromoform ND UJ 2.1 ug/m3 07/26/2022 TO-15 Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 t-Zerterachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 v-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-	1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Ethyl Benzene 4.1 0.88 ug/m3 07/26/2022 TO-15 m and/or p-Xylene 3.9 1.8 ug/m3 07/26/2022 TO-15 Bromoform ND UJ 2.1 ug/m3 07/26/2022 TO-15 Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1,2,2-Tetrachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 o-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,3,5-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15	Tetrachloroethene	70		0.34	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene 3.9 1.8 ug/m3 07/26/2022 TO-15 Bromoform ND UJ 2.1 ug/m3 07/26/2022 TO-15 Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1,2,2-Tetrachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 o-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,3,5-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>0.93</td> <td>ug/m3</td> <td>07/26/2022</td> <td>TO-15</td> <td></td>	Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Bromoform ND UJ 2.1 ug/m3 07/26/2022 TO-15 Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1,2,2-Tetrachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 o-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Pichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15	Ethyl Benzene	4.1		0.88	ug/m3	07/26/2022	TO-15	
Styrene ND UJ 0.86 ug/m3 07/26/2022 TO-15 1,1,2,2-Tetrachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 o-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,3,5-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-A-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/	m and/or p-Xylene	3.9		1.8	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane ND UJ 1.4 ug/m3 07/26/2022 TO-15 o-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,3,5-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Hrichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	Bromoform	ND	UJ	2.1	ug/m3	07/26/2022	TO-15	
o-Xylene 1.6 0.88 ug/m3 07/26/2022 TO-15 4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,3,5-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	Styrene	ND	UJ	0.86	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene ND 4.0 ug/m3 07/26/2022 TO-15 1,3,5-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	1,1,2,2-Tetrachloroethane	ND	UJ	1.4	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene 1.4 0.99 ug/m3 07/26/2022 TO-15 1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	o-Xylene	1.6		0.88	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene 5.9 J 0.99 ug/m3 07/26/2022 TO-15 Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
Benzyl Chloride ND 4.2 ug/m3 07/26/2022 TO-15 1,3-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	1,3,5-Trimethylbenzene	1.4		0.99	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene ND UJ 1.2 ug/m3 07/26/2022 TO-15 1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	1,2,4-Trimethylbenzene	5.9	J	0.99	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	1,3-Dichlorobenzene	ND	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene ND 1.2 ug/m3 07/26/2022 TO-15 1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	1,4-Dichlorobenzene	ND		1.2	-	07/26/2022	TO-15	
1,2,4-Trichlorobenzene ND 1.5 ug/m3 07/26/2022 TO-15	1,2-Dichlorobenzene	ND		1.2		07/26/2022	TO-15	
	1,2,4-Trichlorobenzene	ND		1.5			TO-15	
	Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results (Continued)

Lab ID: 2200150-19

Sample ID: Location #3 SG 2 Matrix: Air Sampled: 07/12/22 11:45

	·-	ualifiers/	,	Date		
Analyte	Result C	omments MDL / RI	. Units	Analyzed	Method	
olatile Organic Compounds by GCMS						VOC 3230.0
Dichlorodifluoromethane	1.7	1.0	ug/m3	07/26/2022	TO-15	
Chloromethane	ND	0.42	. ug/m3	07/26/2022	TO-15	
1,2-Dichlorotetrafluoroethane	ND	1.4	ug/m3	07/26/2022	TO-15	
Vinyl Chloride	ND	0.13	ug/m3	07/26/2022	TO-15	
1,3-Butadiene	ND	0.45	ug/m3	07/26/2022	TO-15	
Bromomethane	ND	0.78	ug/m3	07/26/2022	TO-15	
Chloroethane	ND	0.53	ug/m3	07/26/2022	TO-15	
Vinyl Bromide	ND	0.88	ug/m3	07/26/2022	TO-15	
Trichlorofluoromethane	1.2	1.1	. ug/m3	07/26/2022	TO-15	
2-Propanol	2.4	0.50	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Methylene Chloride	ND	0.70	ug/m3	07/26/2022	TO-15	
Allyl Chloride	0.82	0.32	2 ug/m3	07/26/2022	TO-15	
1,1,2-Trichlorotrifluoroethane	ND	1.5	i ug/m3	07/26/2022	TO-15	
Carbon Disulfide	0.99	0.63	ug/m3	07/26/2022	TO-15	
trans-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
1,1-Dichloroethane	ND	0.82	. ug/m3	07/26/2022	TO-15	
Methyl tert-butyl ether	ND	0.73	ug/m3	07/26/2022	TO-15	
Vinyl Acetate	11 J	0.72	2 ug/m3	07/26/2022	TO-15	
2-Butanone	16	1.9	ug/m3	07/26/2022	TO-15	
cis-1,2-Dichloroethene	ND	0.20	ug/m3	07/26/2022	TO-15	
Ethyl Acetate	ND	1.1	. ug/m3	07/26/2022	TO-15	
Hexane	17 J	0.71	. ug/m3	07/26/2022	TO-15	
Chloroform	0.16	0.12	2 ug/m3	07/26/2022	TO-15	
Tetrahydrofuran	ND	0.60	ug/m3	07/26/2022	TO-15	
1,2-Dichloroethane	ND	0.10	ug/m3	07/26/2022	TO-15	
1,1,1-Trichloroethane	ND	1.1	. ug/m3	07/26/2022	TO-15	
Benzene	5.3 J	0.16	i ug/m3	07/26/2022	TO-15	
Carbon Tetrachloride	ND UJ	0.32	. ug/m3	07/26/2022	TO-15	
Cyclohexane	6.0 J	1.4	ug/m3	07/26/2022	TO-15	
1,2-Dichloropropane	ND	0.93	ug/m3	07/26/2022	TO-15	
Bromodichloromethane	ND	1.4	ug/m3	07/26/2022	TO-15	
1,4-Dioxane	ND	0.73	=	07/26/2022	TO-15	
Trichloroethene	ND	0.14		07/26/2022	TO-15	
2,2,4-Trimethylpentane	ND	1.0	=	07/26/2022	TO-15	
Heptane	9.2	0.83	=	07/26/2022	TO-15	
cis-1,3-Dichloropropene	ND UJ	0.46	=	07/26/2022	TO-15	
4-Methyl-2-Pentanone	ND	1.7	=	07/26/2022	TO-15	
trans-1,3-Dichloropropene	ND UJ	0.46	=	07/26/2022	TO-15	
1,1,2-Trichloroethane	ND	1.1	=	07/26/2022	TO-15	
Toluene	15	0.76		07/26/2022	TO-15	Page 60 of 9

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200150 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

Project: Garden City Dry Cleaner sites

08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-19 (Continued)

07/12/22 11:45 Sample ID: Location #3 SG 2 Sampled: Matrix: Аіг

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS (Continue	ed)						VOC 3230.04
2-Hexanone	2.1		1.7	ug/m3	07/26/2022	TO-15	
Dibromochloromethane	ND I	נט	1.7	ug/m3	07/26/2022	TO-15	
1,2-Dibromoethane	ND		1.6	ug/m3	07/26/2022	TO-15	
Tetrachloroethene	18		0.34	ug/m3	07/26/2022	TO-15	
Chlorobenzene	ND		0.93	ug/m3	07/26/2022	TO-15	
Ethyl Benzene	8.3		0.88	ug/m3	07/26/2022	TO-15	
m and/or p-Xylene	4.8		1.8	ug/m3	07/26/2022	TO-15	
Bromoform	ND I	UJ	2.1	ug/m3	07/26/2022	TO-15	
Styrene	ND I	נט	0.86	ug/m3	07/26/2022	TO-15	
1,1,2,2-Tetrachloroethane	ND I	נט	1.4	ug/m3	07/26/2022	TO-15	
o-Xylene	1.9		0.88	ug/m3	07/26/2022	TO-15	
4-Ethyltoluene	ND		4.0	ug/m3	07/26/2022	TO-15	
1,3,5-Trimethylbenzene	1.4		0.99	ug/m3	07/26/2022	TO-15	
1,2,4-Trimethylbenzene	4.6]	0.99	ug/m3	07/26/2022	TO-15	
Benzyl Chloride	ND		4.2	ug/m3	07/26/2022	TO-15	
1,3-Dichlorobenzene	ND I	UJ	1.2	ug/m3	07/26/2022	TO-15	
1,4-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2-Dichlorobenzene	ND		1.2	ug/m3	07/26/2022	TO-15	
1,2,4-Trichlorobenzene	ND		1.5	ug/m3	07/26/2022	TO-15	
Hexachlorobutadiene	ND		2.2	ug/m3	07/26/2022	TO-15	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200150

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/08/2022 08:55

Sample Results

(Continued)

Lab ID: 2200150-19

Sample ID: Location #3 SG 2 Matrix: Air Sampled: 07/12/22 11:45

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method	
Volatile Organic Compounds by GCMS						VOC 3230.04
Propene (Reshot)	40 J	3.5	ug/m3	07/27/2022	TO-15	
Acetone (Reshot)	47	9.6	ug/m3	07/27/2022	TO-15	

Jamie Bernard-Drakey WO#: 2200150 R7 Superfund and Emergency Management Project ID: JBDGCDC SEMD Project: Garden City Dry Cleaner sites

Reported: 08/08/2022 08:55

Certified Analyses included in this Report

Analyte	CAS #	Certifications	
TO-15 in Air			VOC 3230.04
Propene	115-07-1	ISO	
Dichlorodifluoromethane	75-71-8	ISO	
Chloromethane	74-87-3	ISO	
1,2-Dichlorotetrafluoroethane	76-14-2	ISO	
Vinyl Chloride	75-01-4	ISO	
1,3-Butadiene	106-99-0	ISO	
Bromomethane	74-83-9	ISO	
Chloroethane	75-00-3	ISO	
Vinyl Bromide	593-60-2	ISO	
Acetone	67-64-1	ISO	
Trichlorofluoromethane	75-69-4	ISO	
2-Propanol	67-63-0	ISO	
1,1-Dichloroethene	75-35-4	ISO	
Methylene Chloride	75-09-2	ISO	
Allyl Chloride	107-05-1	ISO	
1,1,2-Trichlorotrifluoroethane	76-13-1	ISO	
Carbon Disulfide	75-15-0	ISO	
trans-1,2-Dichloroethene	156-60-5	ISO	
1,1-Dichloroethane	75-34-3	ISO	
Methyl tert-butyl ether	1634-04-4	ISO	
Vinyl Acetate	108-05-4	ISO	
2-Butanone	78-93-3	ISO	
	156-59-2	ISO	
cis-1,2-Dichloroethene	141-78-6	ISO	
Ethyl Acetate			
Hexane	110-54-3	ISO	
Chloroform	67-66-3	ISO	
Tetrahydrofuran	109-99-9	ISO	
1,2-Dichloroethane	107-06-2	ISO	
1,1,1-Trichloroethane	71-55-6	ISO	
Benzene	71-43-2	ISO	
Carbon Tetrachloride	56-23-5	ISO	
Cyclohexane	110-82-7	ISO	
1,2-Dichloropropane	78-87-5	ISO	
Bromodichloromethane	75-27-4	ISO	
1,4-Dioxane	123-91-1	ISO	
Trichloroethene	79-01-6	ISO	
2,2,4-Trimethylpentane	540-84-1	ISO	
Heptane	142-82-5	ISO	
cis-1,3-Dichloropropene	10061-01-5	ISO	
4-Methyl-2-Pentanone	108-10-1	ISO	
trans-1,3-Dichloropropene	10061-02-6	ISO	
1,1,2-Trichloroethane	79-00-5	ISO	
Toluene	108-88-3	ISO	
2-Hexanone	591-78-6	ISO	
Dibromochloromethane	12 4-4 8-1	ISO	
1,2-Dibromoethane	106-93-4	ISO	
Tetrachloroethene	127-18-4	ISO	
Chlorobenzene	108-90-7	ISO	
Ethyl Benzene	100-41-4	ISO	Page 63 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Certified Analyses included in this Report (Continued)

Analyte	CAS #	Certifications	
TO-15 in Air (Continued)			VOC 3230.04
m and/or p-Xylene	179601-23-1	ISO	
Bromoform	75-25-2	ISO	
Styrene	100-42-5	ISO	
1,1,2,2-Tetrachloroethane	79-34 - 5	ISO	
o-Xylene	95-47-6	ISO	
4-Ethyltoluene	622-96-8	ISO	
1,3,5-Trimethylbenzene	108-67-8	ISO	
1,2,4-Trimethylbenzene	95-63-6	ISO	
Benzyl Chloride	100 -44 -7	ISO	
1,3-Dichlorobenzene	541-73-1	ISO	
1,4-Dichlorobenzene	106 -46 -7	ISO	
1,2-Dichlorobenzene	95-50-1	ISO	
1,2,4-Trichlorobenzene	120-82-1	ISO	
Hexachlorobutadiene	87-68-3	ISO	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

List of Certifications

Code	Description	Number	Expires
ISO Mobile	ISO/IEC 17025:2017 - Environmental Testing	L22-243	03/31/2024
ISO	ISO/IEC 17025:2017 - Environmental Testing	L22-243	03/31/2024

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Explanation of Qualifiers used on this report

<u>Item</u>	Definition
J	The identification of the analyte is acceptable, the reported value is an estimate.
UJ	The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
Dry	Sample results reported on a dry weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Explanation of Units used on this report

Units	Description
%	Percent
[blank]	
boat	Milestone boat
Deg C	Degrees Celcius
g	Grams
g/min	Gallons per Minute
mg	Milligrams
mg/kg	Milligrams per Kilogram
mg/L	Milligrams per Liter
mL	Milliliters
mL/L/hr	Milliliters per Liter per Hour
mm	Millimeters
mm/sec	Millimeters per second
MPN/100mL	Most Probable Number per One Hundred Milliliters
mV	Millivolts
ng	Nanograms
ng/kg	Nanograms per Kilogram
ng/L	Nanograms per Liter
NTU	Nephelometric Turbidity Unit
P/A	Presence/Absence
pg/cm2	Picograms per Square Centimeter
pg/L	Picograms per Liter
pg/m3	Picograms per Cubic Meter
SU	Standard Unit
ug/cm2	Micrograms per Square Centimeter
ug/kg	Micrograms per Kilogram
ug/L	Micrograms per Liter
ug/m3	Micrograms per Cubic Meter
ug/mL	Micrograms per Milliliter
uL	Microliters
umhos/cm	Micromhos per Centimeter
uS/cm	Microsiemens per Centimeter

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception
			Default Report (not modified)
			VERSION 6,22:1002
2200150-01	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-01	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-01	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-01	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-01	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-01	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-01	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-01	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-01	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-01	VOC 3230,04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-01	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-01	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-01	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-01	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-01	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-01	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-01	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-01	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-01RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-02	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-02	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method
			specified limit. Page 68 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-02	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-02	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-02	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-02	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-02	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-02	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-02	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-02	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-02	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-02	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-02	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-02	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-02	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-02	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-02	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-02	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-02RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-03	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-03	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-03	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-03	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-03	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-03	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-03	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s)
			were dropped. The Reporting Limit is elevated. Page 69 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

<u>LabNumber</u>	Analysis	Analyte	Exception
2200150-03	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-03	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-03	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-03	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-03	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-03	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-03	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-03	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-03	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-03	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-03	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-03	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate,
2200150-03	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-03	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-03	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-03	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-03	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-03RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-04	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-04	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-04	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-04	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-04	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-04	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-04	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-04	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-04	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-04	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-04	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the
			established control limit.

Page 70 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-04	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-04	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-04	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-04	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-04	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-04	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-04	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit,
2200150-04	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-04	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-04	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit, The reporting limit is an estimate.
2200150-04	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-04	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-04	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-04	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-04	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-05	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-05	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-05	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-05	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-05	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-05	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-05	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-05	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-05	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-05	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-05	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-05	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-05	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the
			established control limit.

Page 71 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Items for Project Manager Review (Continued)

<u>LabNumber</u>	Analysis	Analyte	Exception
2200150-05	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-05	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-05	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-05	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-05	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200150-05RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-06	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-06	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-06	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-06	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-06	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
200150-06	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-06	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-06	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-06	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
200150-06	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-06	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-06	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-06	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-06	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-06	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-06	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-06	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the

Page 72 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-06	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-06	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-06	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-06	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-06	VOC 3230,04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-06	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-06	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-06	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-06RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-07	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-07	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-07	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-07	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-07	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-07	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-07	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-07	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-07	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-07	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-07	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-07	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-07	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-07	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-07	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-07	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-07	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-07	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-07	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-07	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit.
			The reporting limit is an estimate.

Page 73 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-07	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-07	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-07	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-07	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-07	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-08	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-08	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-08	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-08	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-08	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-08	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-08	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-08	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-08	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-08	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-08	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-08	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-08	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-08	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-08	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-08	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-08	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-08	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-08	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-08	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-08	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-08	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-08	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-08	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit.
			The reporting limit is an estimate.

Page 74 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

<u>LabNumber</u>	Analysis	Analyte	Exception
2200150-08	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-09	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-09	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-09	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-09	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-09	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-09	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-09	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-09	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-09	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-09	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-09	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-09	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-09	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-09	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-09	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-09	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-09	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-09	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-09	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-09	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-09	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-09	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-09	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-09	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-09	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-09RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-10	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-10	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method

Page 75 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-10	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-10	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-10	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-10	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-10	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-10	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-10	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-10	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-10	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-10	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-10	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-10	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-10	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-10	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-10	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-10	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-10RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-11	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-11	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-11	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-11	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-11	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-11	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-11	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s)
			were dropped. The Reporting Limit is elevated. Page 76 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-11	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-11	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-11	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-11	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-11	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-11	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-11	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-11	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-11	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-11	VOC 3230,04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-11	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-11	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-11	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-11	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-11	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-11	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-11	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-11RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-12	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-12	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-12	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-12	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-12	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-12	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-12	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-12	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-12	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-12	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-12	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.

Page 77 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-12	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-12	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-12	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-12	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-12	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-12	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-12	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-12	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-12	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-12	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-12	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-12	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-12	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-12	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-12RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-13	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-13	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-13	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-13	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-13	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-13	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-13	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-13	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-13	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-13	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-13	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-13	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-13	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-13	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the
			established control limit.

Page 78 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Items for Project Manager Review (Continued)

<u> abNumber</u>	Analysis	Analyte	Exception
2200150-13	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-13	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-13	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-13	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-13	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-13	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200150-13	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-13	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-13	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-13	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-13	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200150-13RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
200150-14	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-14	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
200150-14	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
200150-14	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-14	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-14	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-14	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-14	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
200150-14	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
200150-14	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-14	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
200150-14	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-14	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-14	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-14	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-14	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-14	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the

Page 79 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

1,1,2,2-Tetrachlorosthane U.F. The analyse was not detected at or above the reporting limit. The morting limit is an estimate.	<u> LabNumber</u>	Analysis	Analyte	Exception
Percepting limit is an estimate.	2200150-14	VOC 3230.04	1,1,2,2-Tetrachloroethane	
The reporting limit is an estimate. 200150-14 VOC 3230.04 Carbon Tetrachloride 200150-14 VOC 3230.04 Cst-1,-9 Ichibropropene 200150-14 VOC 3230.04 Dibromochloromethane 200150-15 VOC 3230.04 Dibromochloromethane 200150-16 VOC 3230.04 Dibromochloromethane 200150-17 Dibromochloromethane 200150-17 Dibromochloromethane 200150-18 VOC 3230.04 Dibromochloromethane 200150-18 VOC 3230.04 Dibromochloromethane 200150-15 VOC 3230.04 Viryl Acetate 200150-15 VOC 3230.04 Viryl Acetate 200150-15 VOC 3230.04 Dibromochloromethane 200150-15 VOC 3230.0	2200150-14	VOC 3230.04	1,3-Dichlorobenzene	•
The reporting limit is an estimate.	2200150-14	VOC 3230.04	Bromoform	· · · · · · · · · · · · · · · · · · ·
The reporting limit is an estimate.	2200150-14	VOC 3230.04	Carbon Tetrachloride	• • • • • • • • • • • • • • • • • • • •
The reporting limit is an estimate.	2200150-14	VOC 3230.04	cis-1,3-Dichloropropene	· · · · · · · · · · · · · · · · · · ·
The reporting limit is an estimate.	2200150-14	VOC 3230.04	Dibromochloromethane	,
The reporting limit is an estimate.	2200150-14	VOC 3230.04	Styrene	•
established control limit. 220150-15 VOC 3230.04 Viryl Acetate CCV-01: Continuing Calibration Verification was greater than the method specified limit. 220150-15 VOC 3230.04 1,1,2,2-Tetrachioroethane CCV-02: Continuing Calibration Verification was less than the method specified limit. 220150-15 VOC 3230.04 4-Bromofluoroberizene Exceeds lower control limit. 220150-15 VOC 3230.04 1,2,4-Trimethylbenizene ICL-01: Initial calibration did not meet method specified limits. 220150-15 VOC 3230.04 dis-1,3-Dichioropropene ICL-01: Initial calibration did not meet method specified limits. 220150-15 VOC 3230.04 Syrene ICL-01: Initial calibration did not meet method specified limits. 220150-15 VOC 3230.04 Syrene ICL-01: Initial calibration did not meet method specified limits. 220150-15 VOC 3230.04 trans-1,3-Dichioropropene ICL-01: Initial calibration did not meet method specified limits. 220150-15 VOC 3230.04 Cydohexane ICL-01: Initial calibration did not meet method specified limits. 220150-15 VOC 3230.04 Cydohexane ICL-01: Initial calibration did not meet method specified limits. 220150-15 VOC 3230.04 Cydohexane ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 220150-15 VOC 3230.04 Cydohexane ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 220150-15 VOC 3230.04 Viryl Acetate ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 220150-15 VOC 3230.04 Viryl Acetate ICS-01: Laboratory Control Sample recovery was less than the established control limit. 220150-15 VOC 3230.04 Specified interaction of limit interaction of limit. 220150-15 VOC 3230.04 Specified interaction of limit interaction of limit. 220150-15 VOC 3230.0	2200150-14	VOC 3230.04	trans-1,3-Dichloropropene	•
method specified limit. CV-V2: Continuing Calibration Verification was less than the method specified limit. 2200150-15 VOC 3230.04 4-Bromofluorobenzene Exceeds lower control limit 2200150-15 VOC 3230.04 1,2,4-Trimethylbenzene ICL-01: Initial calibration did not meet method specified limits. 2200150-15 VOC 3230.04 cls-1,3-Dichloropropene ICL-01: Initial calibration did not meet method specified limits. 2200150-15 VOC 3230.04 Syrene ICL-01: Initial calibration did not meet method specified limits. 2200150-15 VOC 3230.04 Syrene ICL-01: Initial calibration did not meet method specified limits. 2200150-15 VOC 3230.04 trans-1,3-Dichloropropene ICL-01: Initial calibration did not meet method specified limits. 2200150-15 VOC 3230.04 Cyclohexane ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated. 2200150-15 VOC 3230.04 Benzene ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 2200150-15 VOC 3230.04 Cyclohexane ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 2200150-15 VOC 3230.04 Viryl Acetate ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 2200150-15 VOC 3230.04 Viryl Acetate ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 2200150-15 VOC 3230.04 I,1,2,2-Tetrachloroethane ICS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 I,3-Dichlorobenzene ICS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 Carbon Tetrachlorde ICS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 Dibromochloromethane ICS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 Dibromochloromethane ICS-02: Laboratory Control Sample recovery was less than the established control lim	2200150-14RE1	VOC 3230.04	Propene	· · · · · -
Specified limit. Specified l	2200150-15	VOC 3230.04	Vinyl Acetate	
1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,2,0-Trimethylbenzene 1,2,0-Trimethylbenz	2200150-15	VOC 3230.04	1,1,2,2-Tetrachloroethane	_
200150-15 VOC 3230.04 cb-1,3-Dichloropropene ICL-01: Initial calibration did not meet method specified limits. 200150-15 VOC 3230.04 Styrene ICL-01: Initial calibration did not meet method specified limits. 200150-15 VOC 3230.04 trans-1,3-Dichloropropene ICL-01: Initial calibration did not meet method specified limits. 200150-15 VOC 3230.04 Cydohexane ICL-01: Initial calibration and not meet method specified limits. 200150-15 VOC 3230.04 Cydohexane ICL-02: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated. 200150-15 VOC 3230.04 Benzene LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Cydohexane LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Hexane LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Virryl Acetate LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Virryl Acetate LCS-01: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 1,3-Dichlorobenzene LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Bromoform LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Carbon Tetrachloride LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 J.2,4-Trimethylbenzene SV-01: Second Source Calibration Verification was greater than the method specified limit. 200150-15 VOC 3230.04 J.3-Dichlorobenzene U.3-Dichlorobenzene U.3-Dichlorobenz	200150-15	VOC 3230.04	4-Bromofiuorobenzene	Exceeds lower control limit
Styrene ICL-01: Initial calibration did not meet method specified limits.	200150-15	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
200150-15 VOC 3230.04 trans-1,3-Dichloropropene ICL-01: Initial calibration ange was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated. 200150-15 VOC 3230.04 Benzene ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated. 200150-15 VOC 3230.04 Benzene ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Cydohexane ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Hexane ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Vinyl Acetate ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Vinyl Acetate ICS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 I,1,2,2-Tetrachloroethane ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Bromoform ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Bromoform ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Carbon Tetrachloride ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane ICS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane ICS-02: Laboratory Control Sample recove	200150-15	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
200150-15 VOC 3230.04 Cyclohexane ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated. 200150-15 VOC 3230.04 Benzene LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Cyclohexane LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Hexane LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Vinyl Acetate LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Vinyl Acetate LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 1,1,2,2-Tetrachloroethane LCS-01: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 1,3-Dichlorobenzene LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Bromoform LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Carbon Tetrachloride LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane SSV-01: Second Source Calibration Verification was greater than the method specified limit. 200150-15 VOC 3230.04 1,2,4-Trimethylbenzene SSV-01: Second Source Calibration Verification was greater than the method specified limit. 200150-15 VOC 3230.04 1,3-Dichlorobenzene UJ: The analyte was not detected at or above the reporting limit.	200150-15	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
were dropped. The Reporting Limit is elevated. 200150-15 VOC 3230.04 Benzene LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Cydohexane LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Hexane LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Vinyl Acetate LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 Vinyl Acetate LCS-01: Laboratory Control Sample recovery was greater than the established control limit. 200150-15 VOC 3230.04 1,1,2,2-Tetrachloroethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 1,3-Dichlorobenzene LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Bromoform LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Carbon Tetrachloride LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 Dibromochloromethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 200150-15 VOC 3230.04 1,2,4-Trimethylbenzene SSV-01: Second Source Calibration Verification was greater than the method specified limit. 200150-15 VOC 3230.04 1,3-Dichlorobehane UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.	200150-15	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery	2200150-15	VOC 3230.04	Cyclohexane	
established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-01: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-01: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-04: Laboratory Control Sample recovery was l	2200150-15	VOC 3230.04	Benzene	• • • •
established control limit. LCS-01: Laboratory Control Sample recovery was greater than the established control limit. LCS-03: Laboratory Control Sample recovery was greater than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less than the established control limit. LCS-03: Laboratory Control Sample recovery was less th	2200150-15	VOC 3230.04	Cyclohexane	· · · · · · · · · · · · · · · ·
established control limit. 2200150-15 VOC 3230.04 1,1,2,2-Tetrachloroethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 1,3-Dichlorobenzene LCS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 Bromoform LCS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 Carbon Tetrachloride LCS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 Dibromochloromethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 Dibromochloromethane LCS-02: Laboratory Control Sample recovery was less than the established control limit. 2200150-15 VOC 3230.04 1,2,4-Trimethylbenzene SSV-01: Second Source Calibration Verification was greater than the method specified limit. 2200150-15 VOC 3230.04 1,1,2,2-Tetrachloroethane UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate. 2200150-15 VOC 3230.04 1,3-Dichlorobenzene UJ: The analyte was not detected at or above the reporting limit.	2200150-15	VOC 3230.04	Hexane	
established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the	2200150-15	VOC 3230.04	Vinyl Acetate	· · · · · · · · · · · · · · · · · · ·
established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. SSV-01: Second Source Calibration Verification was greater than the method specified limit. UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate. UJ: The analyte was not detected at or above the reporting limit.	2200150-15	VOC 3230.04	1,1,2,2-Tetrachloroethane	·
established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. SSV-01: Second Source Calibration Verification was greater than the method specified limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit.	2200150-15	VOC 3230.04	1,3-Dichlorobenzene	·
established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. SSV-01: Second Source Calibration Verification was greater than the method specified limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. US: The analyte was not detected at or above the reporting limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. LCS-02: Laboratory Control Sample recovery was less than the established control limit. US: The analyte was not detected at or above the reporting limit.	2200150-15	VOC 3230.04	Bromoform	
established control limit. 2200150-15 VOC 3230.04 1,2,4-Trimethylbenzene SSV-01: Second Source Calibration Verification was greater than the method specified limit. 2200150-15 VOC 3230.04 1,1,2,2-Tetrachloroethane UJ: The analyte was not detected at or above the reporting limit. 2200150-15 VOC 3230.04 1,3-Dichlorobenzene UJ: The analyte was not detected at or above the reporting limit.	2200150-15	VOC 3230.04	Carbon Tetrachloride	· · · · · · · · · · · · · · · · · · ·
method specified limit. 2200150-15 VOC 3230.04 1,1,2,2-Tetrachloroethane UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate. 2200150-15 VOC 3230.04 1,3-Dichlorobenzene UJ: The analyte was not detected at or above the reporting limit.	2200150-15	VOC 3230.04	Dibromochloromethane	
The reporting limit is an estimate. 2200150-15 VOC 3230.04 1,3-Dichlorobenzene UJ: The analyte was not detected at or above the reporting limit.	2200150-15	VOC 3230.04	1,2,4-Trimethylbenzene	
· · · · · · · · · · · · · · · · · · ·	2200150-15	VOC 3230.04	1,1,2,2-Tetrachloroethane	, , ,
	2200150-15	VOC 3230.04	1,3-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

Items for Project Manager Review (Continued)

<u>LabNumber</u>	Analysis	Analyte	Exception
2200150-15	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-15	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-15	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-15	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-15	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-15	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-15RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit,
2200150-15RE2	VOC 3230.04	Tetrachloroethene	ICL-07: Sample result concentration greater than the highest standard for the initial calibration.
2200150-16	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-16	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-16	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-16	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-16	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-16	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-16	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-16	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-16	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-16	VOC 3230.04	Ethyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-16	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-16	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-16	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-16	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-16	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-16	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-16	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-16	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-16	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-16	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-16	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit.
			The reporting limit is an estimate.

Page 81 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

<u>LabNumber</u>	Analysis	Analyte	Exception
2200150-16	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-16	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-16	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-16	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-16	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-16RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-17	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-17	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-17	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-17	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
200150-17	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
200150-17	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-17	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
200150-17	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
200150-17	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
200150-17	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-17	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-17	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
200150-17	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-17	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
200150-17	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
200150-17	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-17	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-17	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200150-17	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200150-17	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-17	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-17	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-17	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate. Page 82 of 90

Page 82 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

Items for Project Manager Review (Continued)

LabNumber	Analysis	Analyte	Exception
2200150-17	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-17	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-17RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-18	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
2200150-18	VOC 3230,04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-18	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-18	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-18	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-18	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-18	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-18	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-18	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-18	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-18	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-18	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-18	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-18	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-18	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-18	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-18	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-18	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-18	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-18	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-18	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-18	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-18	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-18	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-18	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200150-19	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
			Page 83 of 90

Page 83 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

LabNumber	Analysis	Analyte	Exception
2200150-19	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200150-19	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
2200150-19	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-19	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
2200150-19	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
2200150-19	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
2200150-19	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-19	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-19	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-19	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
2200150-19	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-19	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-19	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-19	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-19	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200150-19	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
2200150-19	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200150-19RE1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
B22G036-BLK1	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
B22G036-BLK1	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BLK1	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BLK1	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BLK1	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BLK1	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s)
			were dropped. The Reporting Limit is elevated. Page 84 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

LabNumber	Analysis	Analyte	Exception
B22G036-BLK1	VOC 3230.04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-BLK1	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-BLK1	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-BLK1	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-BLK1	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-BLK1	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	1,2,4-Trimethylbenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-BLK1	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-BS1	VOC 3230.04	cis-1,2-Dichloroethene	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	cis-1,3-Dichloropropene	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	Methyl tert-butyl ether	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	Tetrahydrofuran	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	trans-1,2-Dichloroethene	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	trans-1,3-Dichloropropene	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
B22G036-BS1	VOC 3230.04	1,1,2,2-Tetrachloroethane	Exceeds lower control limit
B22G036-BS1	VOC 3230.04	1,3-Dichlorobenzene	Exceeds lower control limit
B22G036-BS1	VOC 3230.04	4-Bromofluorobenzene	Exceeds lower control limit
B22G036-BS1	VOC 3230.04	Bromoform	Exceeds lower control limit
B22G036-BS1	VOC 3230.04	Carbon Tetrachloride	Exceeds lower control limit
B22G036-BS1	VOC 3230.04	Dibromochloromethane	Exceeds lower control limit
B22G036-BS1	VOC 3230.04	Benzene	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	cis-1,2-Dichloroethene	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	cis-1,3-Dichloropropene	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	Cyclohexane	Exceeds upper control limit Page 85 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

LabNumber	Analysis	Analyte	Exception
B22G036-BS1	VOC 3230.04	Ethyl Acetate	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	Hexane	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	Methyl tert-butyl ether	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	Propene	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	Tetrahydrofuran	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	trans-1,2-Dichloroethene	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	trans-1,3-Dichloropropene	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	Vinyl Acetate	Exceeds upper control limit
B22G036-BS1	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BS1	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BS1	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BS1	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-BS1	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
B22G036-BS1	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
B22G036-BS1	VOC 3230.04	trans-1,3-Dichloropropene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
B22G036-DUP1	VOC 3230.04	1,1,2,2-Tetrachloroethane	CCV-02: Continuing Calibration Verification was less than the method specified limit.
B22G036-DUP1	VOC 3230,04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-DUP1	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-DUP1	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-DUP1	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G036-DUP1	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
B22G036-DUP1	VOC 3230.04	Benzene	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
B22G036-DUP1	VOC 3230.04	Cyclohexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
B22G036-DUP1	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
B22G036-DUP1	VOC 3230.04	Vinyl Acetate	LCS-01: Laboratory Control Sample recovery was greater than the established control limit.
B22G036-DUP1	VOC 3230,04	1,1,2,2-Tetrachloroethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-DUP1	VOC 3230.04	1,3-Dichlorobenzene	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-DUP1	VOC 3230.04	Bromoform	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-DUP1	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G036-DUP1	VOC 3230.04	Dibromochloromethane	LCS-02: Laboratory Control Sample recovery was less than the established control limit,
B22G036-DUP1	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
B22G036-DUP1	VOC 3230.04	1,1,2,2-Tetrachloroethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-DUP1	VOC 3230.04	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-DUP1	VOC 3230.04	Bromoform	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/2022 08:55

LabNumber	Analysis	Analyte	Exception
B22G036-DUP1	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-DUP1	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-DUP1	VOC 3230.04	Dibromochloromethane	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G036-DUP1	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G085-BLK1	VOC 3230,04	Tetrachloroethene	>= MRL
B22G085-BLK1	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified limits.
B22G085-BLK1	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G085-BLK1	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.
B22G085-BLK1	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.
B22G085-BLK1	VOC 3230,04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest standard(s) were dropped. The Reporting Limit is elevated.
B22G085-BLK1	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G085-BLK1	VOC 3230.04	1,2,4-Trimethylbenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G085-BLK1	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G085-BLK1	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G085-BLK1	VOC 3230,04	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G085-BLK1	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G085-BS1	VOC 3230.04	1,1-Dichloroethene	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G085-BS1	VOC 3230.04	cis-1,2-Dichloroethene	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G085-BS1	VOC 3230.04	Methyl tert-butyl ether	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G085-BS1	VOC 3230.04	Tetrahydrofuran	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G085-BS1	VOC 3230.04	trans-1,2-Dichloroethene	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G085-BS1	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater than the method specified limit.
B22G085-BS1	VOC 3230.04	Carbon Tetrachloride	Exceeds lower control limit
B22G085-BS1	VOC 3230.04	1,1-Dichloroethene	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Allyl Chloride	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Benzene	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Chloroethane	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	cis-1,2-Dichloroethene	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Cyclohexane	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Ethyl Acetate	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Ethyl Benzene	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Hexane	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Methyl tert-butyl ether	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Propene	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Styrene	Exceeds upper control limit
B22G085-BS1	VOC 3230.04	Tetrahydrofuran	Exceeds upper control limit Page 87 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

LabNumber	Analysis	Analyte	Exception	
B22G085-BS1	VOC 3230.04	Toluene	Exceeds upper control limit	
B22G085-BS1	VOC 3230.04	trans-1,2-Dichloroethene	Exceeds upper control limit	
B22G085-BS1	VOC 3230.04	trans-1,3-Dichloropropene	Exceeds upper control limit	
B22G085-BS1	VOC 3230.04	Vinyl Acetate	Exceeds upper control limit	
B22G085-BS1	VOC 3230.04	Vinyl Bromide	Exceeds upper control limit	
B22G085-BS1	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G085-BS1	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G085-BS1	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G085-BS1	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G085-BS1	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest were dropped. The Reporting Limit is elevated.	standard(s)
B22G085-BS1	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was great method specified limit.	er than the
B22G085-BS1	VOC 3230.04	trans-1,3-Dichloropropene	SSV-01: Second Source Calibration Verification was great method specified limit.	er than the
B22G085-DUP1	VOC 3230.04	Propene	LCS-01: Laboratory Control Sample recovery was greater established control limit.	than the
B22G089-BLK1	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G089-BLK1	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified I	imits,
B22G089-BLK1	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G089-BLK1	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G089-BLK1	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest were dropped. The Reporting Limit is elevated.	standard(s)
B22G089-BLK1	VOC 3230.04	Hexane	LCS-01: Laboratory Control Sample recovery was greater established control limit.	than the
B22G089-BLK1	VOC 3230.04	Carbon Tetrachloride	LCS-02: Laboratory Control Sample recovery was less that established control limit.	n the
B22G089-BLK1	VOC 3230.04	1,2,4-Trimethylbenzene	UJ: The analyte was not detected at or above the reporting. The reporting limit is an estimate.	ng limit.
B22G089-BLK1	VOC 3230.04	Carbon Tetrachloride	UJ: The analyte was not detected at or above the reporting.The reporting limit is an estimate.	ng limit.
B22G089-BLK1	VOC 3230.04	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting. The reporting limit is an estimate.	ng limit.
B22G089-BLK1	VOC 3230.04	Styrene	UJ: The analyte was not detected at or above the reporting. The reporting limit is an estimate.	ng limit.
B22G089-BLK1	VOC 3230.04	trans-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting the reporting limit is an estimate.	ng limit.
B22G089-BS1	VOC 3230.04	Vinyl Acetate	CCV-01: Continuing Calibration Verification was greater to method specified limit.	nan the
B22G089-BS1	VOC 3230.04	Carbon Tetrachloride	Exceeds lower control limit	
B22G089-BS1	VOC 3230.04	cis-1,2-Dichloroethene	Exceeds upper control limit	
B22G089-BS1	VOC 3230.04	Ethyl Acetate	Exceeds upper control limit	
B22G089-BS1	VOC 3230.04	Hexane	Exceeds upper control limit	
B22G089-BS1	VOC 3230.04	Tetrahydrofuran	Exceeds upper control limit	
B22G089-BS1	VOC 3230.04	Toluene	Exceeds upper control limit	
B22G089-BS1	VOC 3230.04	Vinyl Acetate	Exceeds upper control limit	
B22G089-BS1	VOC 3230.04	1,2,4-Trimethylbenzene	ICL-01: Initial calibration did not meet method specified I	
B22G089-BS1	VOC 3230.04	cis-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified limits.	
B22G089-BS1	VOC 3230.04	Styrene	ICL-01: Initial calibration did not meet method specified limits.	
B22G089-BS1	VOC 3230.04	trans-1,3-Dichloropropene	ICL-01: Initial calibration did not meet method specified I	imits.
B22G089-BS1	VOC 3230.04	Cyclohexane	ICL-04: Initial calibration range was modified. The lowest	standard(s)
			were dropped. The Reporting Limit is elevated.	Page 88 of 90

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200150R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/08/202208:55

LabNumber	Analysis	Analyte	Exception
B22G089-BS1	VOC 3230.04	1,2,4-Trimethylbenzene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.
B22G089-BS1	VOC 3230.04	trans-1,3-Dichloropropene	SSV-01: Second Source Calibration Verification was greater than the method specified limit.

CHAIN OF CUSTODY RECORD
ENVIRONMENTAL PROTECTION AGENCY REGION VII

EPA PROJECT MANAGER	(Print)			SAMPLING EVE						Ī	DATE OF SAMP	LE COLLECTION(S) -12 2022	COC PAGE
Kirk Mammoliti			Garde	n City Dry			_	_	_			AY YEAR	1 of 1
		707	E OC CONTAINE	CONTENTS	OF SHIPME	ENT	0.000	0.50	MEN				
WORK ORDER (WO) AND SAMPLE NUMBER (e.g. 2200058-01)	1 L PLASTIC BOTTLE	6 L CANISTER	BOTTLE	BOTTLE	VOA SET (3 VIALS EA)	WATER		HAZ WASTE	AR NEDA	OTHE		RECEIVING LABOR EMARKS OTHER INF condition of samples of the sample number	ORMATION ipon receipt,
2200150-01		NUMBER(S) OF CO	MIAMERS PEK	SAMPLE NUMBER		*	40	Î	1			Other sample numb	ers, etc.)
2200150-02		1				T		T	1				
2200150-03		1				İ		İ	1				
2200150-04		1							1				
2200150-05		1				İ	İ	İ	1				
2200150-06		1				İ		İ	1				
2200150-07		1				İ	T	İ	1				-
2200150-08		1				İ	İ	Ì	1				
2200150-09		1				Ī			1				
2200150-10		1							1				
2200150-11		1							1				
2200150-12		1							1				
2200150-13		1							1				
2200150-14		1							1				
2200150-15		1							V				
2200150-16		1							1				
2200150-17		1							V				
2200150-18		1							1				
2200150-19		1							V				
												WO Comp	lete
											Air ca	misters. No te	mp. needed.
												nr7/13/20	22
	ESCRIPTIO	N OF SHIPME	NT							MC	DDE OF SHI	PMENT	-
19CONTAINE	R(S) CONSIS	TING OF $\frac{4}{}$	CRATE	(S) ,		C	OM	MEF	RCIA	L CA	ARRIER		
ICE CHEST	(S): OTHER_	w/WO 22	200151 n	r7/13/22		s	AMF	PLE	R C	IVNC	EYED -		
			DE	RSONNELC	LISTORY PI	ECO	חפו	_	_			(SHIPPING AIRB	ILL NUMBER)
RELINQUISHED BY (PM	N/SAMPLER)			RECEIVED E	Y							REASON FOR CH	ANGE OF CUSTODY
Thomas raidy	Digitally signed DN: CN = Thon Tetra Tech OU Date: 2022.07.*		ratech.com C = US O =	NICOLE SEALED	ROBLE	Z _D uns	igital ate: 2	ly sig 2022.	ned b .07.13	y NIC 3 13:0	COLE ROBLEZ 7:14 -05'00'	STC An	alyses
SEALED RELINQUISHED BY (PM				RECEIVED E		2149	-41	-ED	0				ANGE OF CUSTODY
SEALED	UNSEAL	ED O		SEALED		UNS	EAL	LED					
RELINQUISHED BY (PM				RECEIVED E								REASON FOR CH	ANGE OF CUSTODY
SEALED	UNSEAL	ED O		SEALED		UNS	EAI	LED					
RELINQUISHED BY (PM	VSAMPLER)			RECEIVED E	BY							REASON FOR CH	ANGE OF CUSTODY
SEALED 7-EPA-9262 (REV 4/17)	UNSEAL	ED O		SEALED		UNS	EAL	LED	a	_			Page 90 of 90

v. 1.12

United States Environmental Protection Agency Region 7 300 Minnesota Avenue Kansas City, KS 66101

Date: 08/05/2022

Subject: Transmittal of Sample Analysis Results for WO#: 2200151

Project ID: JBDGCDC

Project: Garden City Dry Cleaner sites

From: Margaret E.W. St. Germain, Chief

Laboratory Technology & Analysis Branch

Laboratory Services and Applied Sciences Division

To: Jamie Bernard-Drakey

R7 Superfund and Emergency Management

SEMD

Enclosed are the analytical data for the above-referenced Work Order[s] (WO) and Project. These results are based on samples as received at the Science and Technology Center. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please ensure that you file this electronic transmittal in your records management system. The Regional Laboratory will retain all the original documentation (e.g. COC[s], supporting files, etc.) according to our LSASD records management system. Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. The process of disposing of the samples for this WO will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Online Sample/Data Disposition and Customer Survey.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295 or email R7_STC_Helpline@epa.gov.

Table of Contents

Project Information	3
Samples in Report	3
Case Narratives - Analyses	4
Sample Results	5
Certified Analyses	38
Certifications	40
Qualifiers and Definitions	41
Units and Definitions	42
Exceptions List	43
Chain of Custody PDF	52

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: **SEMD** Project: Garden City Dry Cleaner sites

08/05/2022 14:04

Summary Information for the Project in this Report

Project Manager: Jamie Bernard-Drakey **Organization: SEMD**

Project ID: JBDGCDC

Project Description: Garden City Dry Cleaner sites

Location: Garden City State: Kansas Program: Superfund

Site Name: Multi-Site

Site ID: 07ZZ Site OU: 00 GPRA Code: 000DD2

Purpose: Site Preliminary Assessment **QAPP Number:** 2022102

Samples in this Report

Lab ID	Sample	Matrix	Date Sampled	Date Received
2200151-01	Location #2 GW (76-80)	Water	07/11/2022 10:00	07/13/2022
2200151-02	Location #2 GW (52-56)	Water	07/11/2022 10:25	07/13/2022
2200151-03	Location #5 GW (66-70)	Water	07/11/2022 13:35	07/13/2022
2200151-04	Location #5 GW (53-57)	Water	07/11/2022 13:45	07/13/2022
2200151-05	Location #1 GW-1 (66-70)	Water	07/11/2022 16:00	07/13/2022
2200151-06	Location #1 GW-1 (53-57)	Water	07/11/2022 16:10	07/13/2022
2200151-07	Location #1 GW-2 (66-70)	Water	07/11/2022 17:20	07/13/2022
2200151-08	Location #1 GW-2 (57-61)	Water	07/11/2022 17:30	07/13/2022
2200151-09	Rinsate Blank	Water	07/12/2022 13:10	07/13/2022
2200151-10	Field Blank	Water	07/12/2022 13:15	07/13/2022
2200151-11	Trip Blank	Water	07/12/2022 13:30	07/13/2022

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

Analysis Case Narrative

Volatiles

VOA LDL W.13F (Water)

Acetone (69.4%, limit = 70%) and Methyl Acetate (82.7%, limit = 83%) were UJ-coded in samples 2200151-01 through 11. These analytes were not found in the samples at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of these analytes in the laboratory control sample. The actual reporting limit for these analytes may be higher than the reported value.

Toluene (85.5%, limit = 87%) was UJ-coded in sample 2200151-03. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte in the laboratory matrix spike duplicate. The actual reporting limit for this analyte may be higher than the reported value.

cis-1,3-Dichloropropene (5.68, limit = 5.6) and 4-Methyl-2-Pentanone (13.0, limit = 11) were UJ-coded in sample 2200151-03. These analytes were not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to poor precision obtained for these analytes in the laboratory matrix spike and matrix spike duplicate. The actual reporting limit for these analytes may be higher than the reported value.

Benzene, Toluene, Chlorobenzene, Ethyl Benzene, m and/or p-Xylene, o-Xylene, Styrene, Isopropylbenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,2-Dichlorobenzene, 1,2-Trichlorobenzene, Naphthalene, and 1,2,3-Trichlorobenzene

Samples 2200151-01 through 06 were determined to be improperly preserved when checked in the laboratory, as the pH was not less than 2. As required by the method, aromatic compounds Benzene, Toluene, Chlorobenzene, Ethyl Benzene, m and/or p-Xylene, o-Xylene, Styrene, Isopropylbenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,2-Dichlorobenzene, 1,2,4-Trichlorobenzene, Naphthalene, and 1,2,3-Trichlorobenzene were not found at or above their reporting limit and were reported with a UJ-code indicating that the reporting limit is an estimated value. The actual reporting limit may be higher than the reported value.

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

Lab ID: 2200151-01

Sample ID: Location #2 GW (76-80) Matrix: Water Sampled: 07/11/22 10:00

Analyte	_	alifiers/ nments MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS					VOC 3230.13
Dichlorodifluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloromethane	ND	1,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Vinyl Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromomethane	ND	1,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichlorofluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND	1,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND	1,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND	1,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND	5,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Tetrachloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Benzene	ND UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloroethane	ND	1,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624 Page 5 of 52

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-01 (Continued)

Sample ID: Location #2 GW (76-80) 07/11/22 10:00 Matrix: Sampled: Water

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
olatile Organic Compounds by GCMS (Continued)			,		,	VOC 3230.1
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 /
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
·				ug/ L		EPA-624
Toluene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND	ບງ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND	ເນ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND	ບງ	1.0	u g /L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 /
1,3-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,4-Dichlorobenzene	ND	uj	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,2-Dichlorobenzene	ND	w	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey

WO#: 2200151
Project ID: JBDGCDC

R7 Superfund and Emergency Management SEMD

Project: Garden City Dry Cleaner sites

Reported: 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-01 (Continued)

Sample ID: Location #2 GW (76-80) Matrix: Water Sampled: 07/11/22 10:00

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND	נט	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-02

Jamie Bernard-Drakey

Sample ID: Location #2 GW (52-56) Matrix: Water Sampled: 07/11/22 10:25

Analyto	Qualifiers/ Result Comment		Units	Date Analyzed	Method
Analyte	Result Commend	S MDL/KL	Units	Analyzeu	
olatile Organic Compounds by GCMS					VOC 3230.1
Dichlorodifluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Vinyl Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromomethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichlorofluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Tetrachloride	ND	1,0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Benzene	ND UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichloroethene	ND	1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624 Page 8 of 5

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-02 (Continued)

Sample ID: Location #2 GW (52-56) 07/11/22 10:25 Matrix: Sampled: Water

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 /
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 /

WO#: 2200151

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC

EMD Project: Garden City Dry Cleaner sites

Reported: 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-02 (Continued)

Sample ID: Location #2 GW (52-56) Matrix: Water Sampled: 07/11/22 10:25

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND	נט	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: 08/05/2022 14:04

SEMD Project: Garden City Dry Cleaner sites

Sample Results (Continued)

Lab ID: 2200151-03

Sample ID: Location #5 GW (66-70) 07/11/22 13:35 Matrix: Sampled: Water

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS					VOC 3230.13
Dichlorodifluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 /
Chloromethane	ND	1.0	u g /L	07/19/2022	EPA-624 SW-846 Method 8260 /
Vinyl Chloride	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Bromomethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 / EPA-624
Chloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichlorofluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND	1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND	1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Tetrachloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Benzene	ND UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 /

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-03 (Continued)

Sample ID: Location #5 GW (66-70) Matrix: Water Sampled: 07/11/22 13:35

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND	UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND	ບນ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-03 (Continued)

Sample ID: Location #5 GW (66-70) Matrix: Water Sampled: 07/11/22 13:35

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND	ບນ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND	IJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-04

Sample ID: Location #5 GW (53-57) 07/11/22 13:45 Matrix: Sampled: Water

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS		•		•	VOC 3230.13
Dichlorodifluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 /
Chloromethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Vinyl Chloride	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Bromomethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Chloroethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Trichlorofluoromethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
manoronaoronenane	ND	1.0	ug/L	0//19/2022	EPA-624
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND	2.0	ug/L	07/19/2022	SW-846 Method 8260 /
Carbon Tetrachloride	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Benzene	ND UJ	1.0	u g/ L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,2-Dichloroethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Trichloroethene	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
					EPA-624 Page 14 of 52

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-04 (Continued)

Sample ID: Location #5 GW (53-57) Matrix: Water Sampled: 07/11/22 13:45

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
olatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND	UJ	1.0	u g/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624 Page 15 of 5

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey

WO#: 2200151

R7 Superfund and Emergency Management

Project ID: JBDGCDC

Reported: 08/05/2022 14:04

Project: Garden City Dry Cleaner sites

Sample Results

(Continued)

Lab ID: 2200151-04 (Continued)

Sample ID: Location #5 GW (53-57) Matrix: Water Sampled: 07/11/22 13:45

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND	uj	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND	ເນ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-05

Sample ID: Location #1 GW-1 (66-70) Matrix: Water Sampled: 07/11/22 16:00

Analyte	Qualifie Result Comme		Units	Date Analyzed	Method
olatile Organic Compounds by GCMS					VOC 3230.13
Dichlorodifluoromethane	1.2	1.0	ug/L	07/19/2022	SW-846 Method 8260 /
Chloromethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Vinyl Chloride	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 / EPA-624
Bromomethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichlorofluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Tetrachloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Benzene	ND UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichloroethene	ND	1.0	u g/L	07/19/2022	SW-846 Method 8260 / EPA-624 Page 17 of 52

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites

08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-05 (Continued)

Sample ID: Location #1 GW-1 (66-70) Matrix: Water Sampled: 07/11/22 16:00

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
/olatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND	UJ	1.0	u g/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND	UJ	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 /

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey

WO#: 2200151

R7 Superfund and Emergency Management

Project ID: JBDGCDC
Project: Garden City Dry Cleaner sites

Reported: 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-05 (Continued)

Sample ID: Location #1 GW-1 (66-70) Matrix: Water Sampled: 07/11/22 16:00

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND	נט	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

WO#: 2200151 Jamie Bernard-Drakey R7 Superfund and Emergency Management Project ID: JBDGCDC

Reported: SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-06

Sample ID: Location #1 GW-1 (53-57) 07/11/22 16:10 Matrix: Sampled: Water

1.0 1.0 1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	07/19/2022 07/19/2022 07/19/2022 07/19/2022 07/19/2022 07/19/2022 07/19/2022	VOC 3230.13 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624
1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	07/19/2022 07/19/2022 07/19/2022 07/19/2022 07/19/2022	EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624
1.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L	07/19/2022 07/19/2022 07/19/2022 07/19/2022 07/19/2022	SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624
1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L	07/19/2022 07/19/2022 07/19/2022 07/19/2022	SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624
1.0 1.0 1.0	ug/L ug/L ug/L	07/19/2022 07/19/2022 07/19/2022	SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624
1.0 1.0 1.0	ug/L ug/L	07/19/2022 07/19/2022	EPA-624 SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624
1.0 1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624 SW-846 Method 8260 / EPA-624
1.0			EPA-624
	ug/L	07/19/2022	muraani di leessi t
5.0			SW-846 Method 8260 / EPA-624
	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1.0	u g/L	07/19/2022	SW-846 Method 8260 / EPA-624 Page 20 of 52
	5.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0 1.0	5.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L 1.0 ug/L	5.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022 1.0 ug/L 07/19/2022

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-06 (Continued)

Sample ID: Location #1 GW-1 (53-57) 07/11/22 16:10 Matrix: Sampled: Water

Andre		Qualifiers/	MDI / DI		Date	Markad
Analyte	Result (Comments	MDL / RL	Units	Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND UJ		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND UJ		1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND UJ		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	u g/L	07/19/2022	SW-846 Method 8260 /
						EPA-624 Page 21 of 52

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-06 (Continued)

Sample ID: Location #1 GW-1 (53-57) Matrix: Water Sampled: 07/11/22 16:10

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND	נט	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND	UJ	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND	uj	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-07

Sample ID: Location #1 GW-2 (66-70) Matrix: Water Sampled: 07/11/22 17:20

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
/olatile Organic Compounds by GCMS						VOC 3230.13
Dichlorodifluoromethane	1.1		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Vinyl Chloride	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromomethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichlorofluoromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichlorotrifluoroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND		1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND U	נו	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND (ננ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Tetrachloride	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Benzene	ND		1.0	u g/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624 Page 23 of 5

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported: SEMD 08/05/2022 14:04

Project: Garden City Dry Cleaner sites

Sample Results (Continued)

Lab ID: 2200151-07 (Continued)

Sample ID: Location #1 GW-2 (66-70) 07/11/22 17:20 Matrix: Sampled: Water

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
/olatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 /

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-07 (Continued)

Sample ID: Location #1 GW-2 (66-70) Matrix: Water Sampled: 07/11/22 17:20

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-08

Sample ID: Location #1 GW-2 (57-61) Matrix: Water Sampled: 07/11/22 17:30

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
/olatile Organic Compounds by GCMS						VOC 3230.13
Dichlorodifluoromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 /
Chloromethane	ND		1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Vinyl Chloride	ND		1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 / EPA-624
Bromomethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichlorofluoromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichlorotrifluoroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND U	מ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND U	מ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Tetrachloride	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Benzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624 Page 26 of 52

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-08 (Continued)

Sample ID: Location #1 GW-2 (57-61) Matrix: Water Sampled: 07/11/22 17:30

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
/olatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND		1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 /

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-08 (Continued)

Sample ID: Location #1 GW-2 (57-61) Matrix: Water Sampled: 07/11/22 17:30

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-09

Sample ID: Rinsate Blank Matrix: Water Sampled: 07/12/22 13:10

Analyte	Qualifiers/ Result Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS					VOC 3230.13
Dichlorodifluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 /
Chloromethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Vinyl Chloride	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Bromomethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Chloroethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Trichlorofluoromethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,1-Dichloroethene	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Acetone	ND UJ	5.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Carbon Disulfide	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Methyl Acetate	ND UJ	5.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Methyl tert-butyl ether	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Methylene Chloride	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
trans-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,1-Dichloroethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
2-Butanone	ND	5.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
cis-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Chloroform	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,1,1-Trichloroethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 / EPA-624
Cyclohexane	ND	2.0	u g/L	07/19/2022	SW-846 Method 8260 /
Carbon Tetrachloride	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Benzene	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
1,2-Dichloroethane	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
Trichloroethene	ND	1.0	ug/L	07/19/2022	EPA-624 SW-846 Method 8260 /
					EPA-624 Page 29 of 5

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-09 (Continued)

Sample ID: Rinsate Blank Matrix: Water Sampled: 07/12/22 13:10

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
/olatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	u g /L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND		1.0	u g/ L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	u g/L	07/19/2022	SW-846 Method 8260 /

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-09 (Continued)

Sample ID: Rinsate Blank Matrix: Water Sampled: 07/12/22 13:10

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-10

Sample ID: Field Blank Matrix: Water Sampled: 07/12/22 13:15

Daniel Com	s/ MDI / DI	11-7-	Date	Mark - J
Result Commen	ts MDL / RL	Units	Analyzed	Method
				VOC 3230.1
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
ND	1.0	u a/ L	07/19/2022	SW-846 Method 8260 /
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 1.0	ND 1.0 ug/L ND 1.0 ug/L	ND 1.0 ug/L 07/19/2022 ND 1.0 ug/L 07/19/2022

300 Minnesota Avenue Kansas City, KS 66101

WO#: 2200151 Jamie Bernard-Drakey

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

2200151-10 (Continued) Lab ID:

Sample ID: Field Blank 07/12/22 13:15 Matrix: Sampled: Water

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 /

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-10 (Continued)

Sample ID: Field Blank Matrix: Water Sampled: 07/12/22 13:15

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-11

Sample ID: Trip Blank Matrix: Water Sampled: 07/12/22 13:30

	Qualifiers,		11-2-	Date	Markad
Analyte	Result Comment	s MDL / RL	Units	Analyzed	Method
olatile Organic Compounds by GCMS					VOC 3230.1
Dichlorodifluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Vinyl Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromomethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichlorofluoromethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichlorotrifluoroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Acetone	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Disulfide	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl Acetate	ND UJ	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methyl tert-butyl ether	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Methylene Chloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Butanone	ND	5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,2-Dichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chloroform	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,1-Trichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Cyclohexane	ND	2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Carbon Tetrachloride	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Benzene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloroethane	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Trichloroethene	ND	1.0	ug/L	07/19/2022	SW-846 Method 8260 /

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results (Continued)

Lab ID: 2200151-11 (Continued)

Sample ID: Trip Blank Matrix: Water Sampled: 07/12/22 13:30

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
olatile Organic Compounds by GCMS (Continued)						VOC 3230.13
Methylcyclohexane	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichloropropane	ND		1.0	u g /L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromodichloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
cis-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
4-Methyl-2-Pentanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Toluene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
trans-1,3-Dichloropropene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2-Trichloroethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Tetrachloroethene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
2-Hexanone	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Dibromochloromethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromoethane	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Chlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Ethyl Benzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
m and/or p-Xylene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
o-Xylene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Styrene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Bromoform	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Isopropylbenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,3-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,4-Dichlorobenzene	ND		1.0	u g/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L	07/19/2022	SW-846 Method 8260 /

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Sample Results

(Continued)

Lab ID: 2200151-11 (Continued)

Sample ID: Trip Blank Matrix: Water Sampled: 07/12/22 13:30

Analyte	Result	Qualifiers/ Comments	MDL / RL	Units	Date Analyzed	Method
Volatile Organic Compounds by GCMS (Continued)						VOC 3230.13
1,2,4-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
Naphthalene	ND		2.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624
1,2,3-Trichlorobenzene	ND		1.0	ug/L	07/19/2022	SW-846 Method 8260 / EPA-624

Jamie Bernard-Drakey WO#: 2200151
R7 Superfund and Emergency Management Project ID: JBDGCDC

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:

SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Certified Analyses included in this Report

CAS #	Certifications	
		VOC 3230.13
75-71-8	ISO	
74-87-3	ISO	
75-01-4	ISO	
74-83-9	ISO	
75-00-3	ISO	
75-69-4	ISO	
75-35-4	ISO	
67-64-1	ISO	
75-15-0		
78-93-3		
20-12-0	130	
	75-71-8 74-87-3 75-01-4 74-83-9 75-00-3 75-69-4 76-13-1 75-35-4 67-64-1 75-15-0 79-20-9 1634-04-4 75-09-2 156-60-5 75-34-3	75-71-8 ISO 74-87-3 ISO 75-01-4 ISO 74-83-9 ISO 75-00-3 ISO 75-69-4 ISO 76-13-1 ISO 75-35-4 ISO 67-64-1 ISO 75-15-0 ISO 79-20-9 ISO 1634-04-4 ISO 75-09-2 ISO 156-60-5 ISO 75-34-3 ISO 75-34-3 ISO 76-66-3 ISO 71-55-6 ISO 71-55-6 ISO 71-55-6 ISO 71-43-2 ISO 107-06-2 ISO 108-87-2 ISO 108-87-2 ISO 108-87-5 ISO 75-27-4 ISO 108-10-1 ISO 108-88-3 ISO 10061-01-5 ISO 108-88-3 ISO 10061-02-6 ISO 79-00-5 ISO 127-18-4 ISO 108-90-7 ISO 108-90-7 ISO 108-90-7 ISO 109-42-5 ISO 75-25-2 ISO 79-34-5 ISO 79-34-5 ISO 79-34-5 ISO 79-34-5 ISO 109-34-1 ISO 10042-5 ISO 79-34-5 ISO 79-35-50-1 ISO

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey WO#: 2200151
R7 Superfund and Emergency Management Project ID: JBDGCDC

R7 Superfund and Emergency Management Project ID: JBDGCDC Reported:
SEMD Project: Garden City Dry Cleaner sites 08/05/2022 14:04

Certified Analyses included in this Report (Continued)

Analyte	CAS #	Certifications	
SW-846 Method 8260 / EPA-624 in Water (Continued		VOC 3230.13	
Naphthalene	91-20-3	ISO	
1,2,3-Trichlorobenzene	87-61-6	ISO	

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

List of Certifications

Code	Description	Number	Expires
ISO Mobile	ISO/IEC 17025:2017 - Environmental Testing	L22-243	03/31/2024
ISO	ISO/IEC 17025:2017 - Environmental Testing	L22-243	03/31/2024

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

Explanation of Qualifiers used on this report

<u>Item</u>	Definition
J	The identification of the analyte is acceptable, the reported value is an estimate.
UJ	The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
Dry	Sample results reported on a dry weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

Explanation of Units used on this report

Units	Description			
%	Percent			
[blank]				
boat	Milestone boat			
Deg C	Degrees Celcius			
g	Grams			
g/min	Gallons per Minute			
mg	Milligrams			
mg/kg	Milligrams per Kilogram			
mg/L	Milligrams per Liter			
mL	Milliliters			
mL/L/hr	Milliliters per Liter per Hour			
mm	Millimeters			
mm/sec	Millimeters per second			
MPN/100mL	Most Probable Number per One Hundred Milliliters			
mV	Millivolts			
ng	Nanograms			
ng/kg	Nanograms per Kilogram			
ng/L	Nanograms per Liter			
NTU	Nephelometric Turbidity Unit			
P/A	Presence/Absence			
pg/cm2	Picograms per Square Centimeter			
pg/L	Picograms per Liter			
pg/m3	Picograms per Cubic Meter			
SU	Standard Unit			
ug/cm2	Micrograms per Square Centimeter			
ug/kg	Micrograms per Kilogram			
ug/L	Micrograms per Liter			
ug/m3	Micrograms per Cubic Meter			
ug/mL	Micrograms per Milliliter			
uL	Microliters			
umhos/cm	Micromhos per Centimeter			
uS/cm	Microsiemens per Centimeter			

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-Drakey R7 Superfund and Emergency Management

SEMD

WO#: 2200151Project ID: JBDGCDC

Reported: 08/05/2022 14:04

Project: Garden City Dry Cleaner sites

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception
			Default Report (not modified)
			VERSION 6,22:1002
	VOC 3230,13	(Water)	H-Flags used
2200151-01	VOC 3230,13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-01	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	1,4-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230,13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-01	VOC 3230,13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-01	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-01	VOC 3230.13	1,2,3-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	1,2,4-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	1,2-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	1,4-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	Chlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	Ethyl Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230,13	Isopropylbenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	m and/or p-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230.13	Naphthalene	UJ: The analyte was not detected at or above the reporting limit, The reporting limit is an estimate.
2200151-01	VOC 3230.13	o-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-01	VOC 3230,13	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate. Page 43 of 52

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

<u>LabNumber</u>	Analysis	Analyte	Exception
2200151-01	VOC 3230.13	Toluene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-02	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
200151-02	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	1,4-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-02	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
200151-02	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
200151-02	VOC 3230.13	1,2,3-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-02	VOC 3230.13	1,2,4-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-02	VOC 3230.13	1,2-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
200151-02	VOC 3230.13	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
200151-02	VOC 3230.13	1,4-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
200151-02	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-02	VOC 3230.13	Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-02	VOC 3230.13	Chlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
200151-02	VOC 3230.13	Ethyl Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-02	VOC 3230.13	Isopropylbenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-02	VOC 3230.13	m and/or p-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-02	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-02	VOC 3230.13	Naphthalene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-02	VOC 3230.13	o-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-02	VOC 3230.13	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

<u> LabNumber</u>	Analysis	Analyte	Exception
2200151-02	VOC 3230.13	Toluene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
200151-03	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	1,4-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-03	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
200151-03	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
200151-03	VOC 3230.13	Toluene	MSB-02: Matrix Spike and/or Matrix Spike Duplicate recovery was less than the established control limit.
200151-03	VOC 3230.13	4-Methyl-2-Pentanone	MSP-01: Matrix Spike and/or Matrix Spike Duplicate precision was greater than the established control limit.
200151-03	VOC 3230.13	cis-1,3-Dichloropropene	MSP-01: Matrix Spike and/or Matrix Spike Duplicate precision was greater than the established control limit.
200151-03	VOC 3230.13	1,2,3-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	1,2,4-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	1,2-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	1,4-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	4-Methyl-2-Pentanone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Chlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-03	VOC 3230.13	cis-1,3-Dichloropropene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-03	VOC 3230.13	Ethyl Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Isopropylbenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

<u> LabNumber</u>	Analysis	Analyte	Exception
200151-03	VOC 3230.13	m and/or p-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Naphthalene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-03	VOC 3230.13	o-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-03	VOC 3230.13	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-03	VOC 3230.13	Toluene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-04	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-04	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-04	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-04	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-04	VOC 3230.13	1,4-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-04	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-04	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-04	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-04	VOC 3230.13	1,2,3-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	1,2,4-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	1,2-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200151-04	VOC 3230.13	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200151-04	VOC 3230.13	1,4-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200151-04	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Chlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Ethyl Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Isopropylbenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

<u>LabNumber</u>	Analysis	Analyte	Exception
2200151-04	VOC 3230.13	m and/or p-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Naphthalene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	o-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-04	VOC 3230.13	Toluene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-05	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-05	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-05	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	1,4-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-05	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-05	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-05	VOC 3230.13	1,2,3-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	1,2,4-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	1,2-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	1,4-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-05	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200151-05	VOC 3230.13	Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	Chlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	Ethyl Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	Isopropylbenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/2022 14:04

<u> LabNumber</u>	Analysis	Analyte	Exception
2200151-05	VOC 3230.13	m and/or p-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-05	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
200151-05	VOC 3230.13	Naphthalene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	o-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-05	VOC 3230.13	Toluene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-06	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-06	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
2200151-06	VOC 3230.13	1,4-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
200151-06	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-06	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-06	VOC 3230.13	1,2,3-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	1,2,4-Trichlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	1,2-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200151-06	VOC 3230.13	1,3-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
200151-06	VOC 3230.13	1,4-Dichlorobenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200151-06	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.
2200151-06	VOC 3230.13	Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Chlorobenzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Ethyl Benzene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Isopropylbenzene	UJ: The analyte was not detected at or above the reporting limit.The reporting limit is an estimate.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/2022 14:04

LabNumber	Analysis	Analyte	Exception
2200151-06	VOC 3230.13	m and/or p-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Naphthalene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	o-Xylene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Styrene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-06	VOC 3230.13	Toluene	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-07	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-07	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-07	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-07	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-07	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-08	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-08	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-08	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-08	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-08	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-09	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-09	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-09	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-09	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-09	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-10	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
2200151-10	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-10	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-10	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-10	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-11	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/2022 14:04

LabNumber	Analysis	Analyte	Exception
2200151-11	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-11	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
2200151-11	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
2200151-11	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G037-BLK1	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
B22G037-BLK1	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G037-BLK1	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G037-BLK1	VOC 3230.13	Acetone	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G037-BLK1	VOC 3230.13	Methyl Acetate	UJ: The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.
B22G037-BS1	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
B22G037-BS1	VOC 3230.13	Acetone	Exceeds lower control limit
B22G037-BS1	VOC 3230.13	Methyl Acetate	Exceeds lower control limit
322G037-MS1	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
B22G037-MS1	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	1,4-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MS1	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MS1	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MS1	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MS1	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
322G037-MS1	VOC 3230.13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MS1	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
322G037-MS1	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G037-MSD1	VOC 3230.13	Acetone	CCV-02: Continuing Calibration Verification was less than the method specified limit.
B22G037-MSD1	VOC 3230.13	Toluene	Exceeds lower control limit
B22G037-MSD1	VOC 3230.13	4-Methyl-2-Pentanone	Exceeds RPD control limit
322G037-MSD1	VOC 3230.13	cis-1,3-Dichloropropene	Exceeds RPD control limit
B22G037-MSD1	VOC 3230.13	1,2,3-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	1,2,4-Trichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	1,2-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	1,3-Dichlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	1,4-Dichlorobenzene	Page 50 of 52

300 Minnesota Avenue Kansas City, KS 66101

Jamie Bernard-DrakeyWO#:2200151R7 Superfund and Emergency ManagementProject ID:JBDGCDCReported:SEMDProject:Garden City Dry Cleaner sites08/05/202214:04

<u>LabNumber</u>	Analysis	Analyte	Exception
B22G037-MSD1	VOC 3230.13	Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	Chlorobenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	Ethyl Benzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	Isopropylbenzene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	m and/or p-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	Naphthalene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	o-Xylene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	Styrene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	Toluene	FSP-01: Sample at incorrect pH when checked at the laboratory.
B22G037-MSD1	VOC 3230.13	Acetone	LCS-02: Laboratory Control Sample recovery was less than the established control limit.
B22G037-MSD1	VOC 3230.13	Methyl Acetate	LCS-02: Laboratory Control Sample recovery was less than the established control limit,

CHAIN OF CUSTODY RECORD
ENVIRONMENTAL PROTECTION AGENCY REGION VI

EPA PROJECT MANAGER Kirk Mammoliti	(Print)		SITE OR	SAMPLING EVE On City Dry	T		IK	EGI	ON	-	07 1	PLE COLLECTION(S) COC PAGE 1-12 2022 1 of 1		
			•	CONTENTS										
WORK ORDER (WO) AND SAMPLE NUMBER (e.g. 2200058-01)	1 L PLASTIC BOTTLE	CANISTER	BOTTLE CONTAINERS PER	BOTTLE SAMPLE NUMBER	VOA SET (3 VIALS EA)	WATER	SAM	HAZ WASTE OTH	ME D	OTHER		RECEIVING LABORATORY REMARKS OTHER INFORMATION condition of samples upon receipt, other sample numbers, etc.)		
2200151-01					1	1								
2200151-02					1	1								
2200151-03					3	1						MS/MSD		
2200151-04					1	1								
2200151-05					1	1		İ	İ					
2200151-06					1	1			T					
2200151-07					1	1		İ		İ				
2200151-08				Í	1	1		İ	İ					
2200151-09					1	1			T			Rinsate Blank		
2200151-10					1	1		İ				Field Blank		
2200151-11					1	1		İ	İ			Trip Blank		
						T		1	İ			•		
						T			T		TT samı	oler noted that some vials will		
7						T			T		have air	bubble(s) &/or sediment in them sent to EPA PM (JBD)/sampler		
						T		Ì	İ		Email se			
								İ	İ		noting iss	sue & that lab will note & proceed		
						T		İ	T		ac	cordingly. nr7/13/2022		
						T		Ĺ	T			WO Complete		
						t			T			1		
				i		t			t					
						t		İ	İ					
						t					Cooler h	and-delivered to the STC with a		
						t		H	t			nge of 2.0-3.5degC. nr7/13/22		
	ESCRIPTIO	N OF SHIPM	ENT		T				-	MO	DE OF SH			
10				(0)	1	_	<u> </u>		2014					
OOMAINE	R(S) CONSIS (S): OTHER_			r <u>7/13/202</u> 2	1					NVE	RRIER	(SHIPPING AIRBILL NUMBER)		
				ERSONNEL C	LISTORY R	FCO	BU		_			(SHIPPING AIRBILL NUMBER)		
RELINQUISHED BY (PN Thomas Kaley	Digitally signed DN: CN = Thorr Tetra Tech OU:	by: Thomes Kaley nes Kaley email = thomes.kaley@ = EMI 3 10:37:29 -05'00'		RECEIVED B NICOLE	ROBLE	Z	igitall	y sigi	ned b	oy NICC 3 13:09	OLE ROBLEZ 0:35 -05'00'	REASON FOR CHANGE OF CUSTODY STC Analyses		
	SEALED UNSEALED RELINQUISHED BY (PM/SAMPLER)					UNS	cAL	ED	0			REASON FOR CHANGE OF CUSTODY		
O SEALED						IINC	FAI	ED	~					
SEALED UNSEALED O				RECEIVED BY REASON FOR CHAIR							REASON FOR CHANGE OF CUSTODY			
SEALED	UNSEAL	ED (SEALED UNSEALED										
RELINQUISHED BY (PM	WSAMPLER)			RECEIVED B	Υ							REASON FOR CHANGE OF CUSTODY		
SEALED 7-EPA-9262 (REV 4/17)	UNSEAL	ED O		SEALED		UNS	EAL	ED	a			Page 52 of 52		

APPENDIX D EXTERIOR SOIL-GAS RESULTS TABLE

LOCATION 3: EXTERIOR SOIL-GAS RESULTS

			1								1	1		_		1	
Analyte	VISL Exterior Soil-gas (Residential)	VISL Exterior Soil-gas (8-Hour Worker)	Sample	Sample Location	Result	Code	Sample	Sample Location	Result	Code	Sample	Sample Location	Result	Code	Sample	Sample Location	Result Code
Dichlorodifluoromethane	585	1,460	2200150-16	Location #3 SG 1	1.7		2200150-17	Location #3 SG 2	1.8		2200150-18	Location #3 SG3	1.7		2200150-19	Location #3 SG 4	1.7
Chloromethane	313	1,310	2200150-16	Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,2-Dichlorotetrafluoroethane	NE	NE		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Vinyl Chloride	56	930		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,3-Butadiene	6.95	29.2		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Bromomethane	17.4	72		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Chloroethane	NE	NE		Location #3 SG 1	ND			Location #3 SG 2	ND	-	2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Vinyl Bromide	10.4	43.8		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18		ND			Location #3 SG 4	ND
Acetone	NE	NE		Location #3 SG 1	41			Location #3 SG 2	38		2200150-18	Location #3 SG3	24			Location #3 SG 4	47
Trichlorofluoromethane	NE			Location #3 SG 1	1.3		+	Location #3 SG 2	1.2		2200150-18		1.3			Location #3 SG 4	1.2
2-Propanol (Isopropanol)	695			Location #3 SG 1	2.1			Location #3 SG 2	2.0		2200150-18		1.4			Location #3 SG 4	2.4
1,1-Dichloroethene	700			Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND			Location #3 SG 4	ND
Methylene Chloride	2,090			Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Allyl Chloride	3.48			Location #3 SG 1	ND			Location #3 SG 2	1.3		2200150-18	Location #3 SG3	ND			Location #3 SG 4	0.82
1,1,2-Trichlorotrifluoroethane	17,400			Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18		ND			Location #3 SG 4	ND
Carbon Disulfide	2,430			Location #3 SG 1	1.3			Location #3 SG 2	1.3		2200150-18	Location #3 SG3	ND			Location #3 SG 4	0.99
trans-1,2-Dichloroethene	140	580		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,1-Dichloroethane	590			Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Methyl tert-butyl ether	3,600			Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Vinyl Acetate	NE 17.400	NE 72.000		Location #3 SG 1	15	J		Location #3 SG 2	9.2	J	2200150-18	Location #3 SG3	5.8			Location #3 SG 4	11 J
2-Butanone (MEK)	17,400			Location #3 SG 1	12			Location #3 SG 2	11		2200150-18	Location #3 SG3	6.6			Location #3 SG 4	16
cis-1,2-Dichloroethene	NE	NE 1 020		Location #3 SG 1	ND 1.0			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19 2200150-19	Location #3 SG 4	ND
Ethyl Acetate	243	1,020		Location #3 SG 1	1.9		+	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND				ND 17 J
Hexane	2,430 41			Location #3 SG 1	0.20	J		Location #3 SG 2	26 0.16	J	2200150-18 2200150-18	Location #3 SG3	8.0 0.13	J	2200150-19 2200150-19	Location #3 SG 4	0.16
Chloroform	6,950			Location #3 SG 1 Location #3 SG 1	ND			Location #3 SG 2 Location #3 SG 2	ND		2200150-18	Location #3 SG3 Location #3 SG3	ND		2200150-19	Location #3 SG 4 Location #3 SG 4	ND
Tetrahydrofuran 1,2-Dichloroethane	24			Location #3 SG 1	ND		+	Location #3 SG 2	ND		2200150-18		ND			Location #3 SG 4	ND
1,1,1-Trichloroethane	17,000	l		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18		ND		2200150-19	Location #3 SG 4	ND
Benzene	100	440		Location #3 SG 1	6.2	_		Location #3 SG 2	7.3		2200150-18	Location #3 SG3	2.2		2200150-19		5.3 J
Carbon Tetrachloride	160	680		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND UJ
Cyclohexane	20,900			Location #3 SG 1	8.3			Location #3 SG 2	8.8		2200150-18	Location #3 SG3	2.8		2200150-19	Location #3 SG 4	6.0 J
1,2-Dichloropropane	13.9	58.4		Location #3 SG 1	ND	,		Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND	,	2200150-19	Location #3 SG 4	ND ND
Bromodichloromethane	25.3	110		Location #3 SG 1	ND			Location #3 SG 2	ND	-	2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,4-Dioxane	104	438		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18		ND			Location #3 SG 4	ND
Trichloroethene	6.7	20		Location #3 SG 1	0.24			Location #3 SG 2	0.14		2200150-18	Location #3 SG3	ND			Location #3 SG 4	ND
2,2,4-Trimethylpentane	NE	NE		Location #3 SG 1	ND			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Heptane	1,390	5,840		Location #3 SG 1	12			Location #3 SG 2	13		2200150-18	Location #3 SG3	4.0		2200150-19	Location #3 SG 4	9.2
cis-1,3-Dichloropropene	NE	NE		Location #3 SG 1	ND	UJ		Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND UJ
4-Methyl-2-Pentanone	10,400			Location #3 SG 1	ND			Location #3 SG 2	ND			Location #3 SG3	ND			Location #3 SG 4	ND
trans-1,3-Dichloropropene	NE	· ·		Location #3 SG 1	ND	UJ		Location #3 SG 2	ND			Location #3 SG3	ND		1	Location #3 SG 4	ND UJ
1,1,2-Trichloroethane	0.7			Location #3 SG 1	ND			Location #3 SG 2	ND			Location #3 SG3	ND			Location #3 SG 4	ND
Toluene	17,000			Location #3 SG 1	20			Location #3 SG 2	22			Location #3 SG3	9.0			Location #3 SG 4	15
2-Hexanone	104	-		Location #3 SG 1	2.5			Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND			Location #3 SG 4	2.1
Dibromochloromethane	NE			Location #3 SG 1	ND			Location #3 SG 2	ND			Location #3 SG3	ND			Location #3 SG 4	ND UJ
1,2-Dibromoethane	1.56			Location #3 SG 1	ND			Location #3 SG 2	ND			Location #3 SG3	ND			Location #3 SG 4	ND
Tetrachloroethene	140			Location #3 SG 1	270		I	Location #3 SG 2	130	1	2200150-18	Location #3 SG3	70			Location #3 SG 4	18
Chlorobenzene	174			Location #3 SG 1	ND			Location #3 SG 2	ND			Location #3 SG3	ND			Location #3 SG 4	ND

LOCATION 3: EXTERIOR SOIL-GAS RESULTS

Analyte	VISL Exterior Soil-gas (Residential)	VISL Exterior Soil-gas (8-Hour Worker)	Sample	Sample Location	Result	Соде	Sample	Sample Location	Result	Code	Sample	Sample Location	Result	Code	Sample	Sample Location	Result Code
Ethyl Benzene	370	1,600	2200150-16	Location #3 SG 1	11		2200150-17	Location #3 SG 2	11		2200150-18	Location #3 SG3	4.1		2200150-19	Location #3 SG 4	8.3
m and/or p-Xylene	350	1,500	2200150-16	Location #3 SG 1	6.6		2200150-17	Location #3 SG 2	8.1		2200150-18	Location #3 SG3	3.9		2200150-19	Location #3 SG 4	4.8
Bromoform	851	3,720	2200150-16	Location #3 SG 1	ND	UJ	2200150-17	Location #3 SG 2	ND	UJ	2200150-18	Location #3 SG3	ND	UJ	2200150-19	Location #3 SG 4	ND UJ
Styrene	3,480	46,600	2200150-16	Location #3 SG 1	ND	UJ	2200150-17	Location #3 SG 2	ND	UJ	2200150-18	Location #3 SG3	ND	IJ	2200150-19	Location #3 SG 4	ND UJ
1,1,2,2-Tetrachloroethane	126	552	2200150-16	Location #3 SG 1	ND	UJ	2200150-17	Location #3 SG 2	ND	UJ	2200150-18	Location #3 SG3	ND	UJ	2200150-19	Location #3 SG 4	ND UJ
o-Xylene	350	1,500	2200150-16	Location #3 SG 1	2.6		2200150-17	Location #3 SG 2	3.2		2200150-18	Location #3 SG3	1.6		2200150-19	Location #3 SG 4	1.9
4-Ethyltoluene	NE	NE	2200150-16	Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,3,5-Trimethylbenzene	209	876	2200150-16	Location #3 SG 1	2.0		2200150-17	Location #3 SG 2	2.3		2200150-18	Location #3 SG3	1.4		2200150-19	Location #3 SG 4	1.4
1,2,4-Trimethylbenzene	209	876	2200150-16	Location #3 SG 1	6.9	J	2200150-17	Location #3 SG 2	8.0	J	2200150-18	Location #3 SG3	5.9	J	2200150-19	Location #3 SG 4	4.6 J
Benzyl Chloride	3.48	14.6	2200150-16	Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,3-Dichlorobenzene	NE	NE	2200150-16	Location #3 SG 1	ND	UJ	2200150-17	Location #3 SG 2	ND	UJ	2200150-18	Location #3 SG3	ND	UJ	2200150-19	Location #3 SG 4	ND UJ
1,4-Dichlorobenzene	85.1	372	2200150-16	Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,2-Dichlorobenzene	695	2,920	2200150-16	Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
1,2,4-Trichlorobenzene	6.95	29.2	2200150-16	Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Hexachlorobutadiene	104			Location #3 SG 1	ND		2200150-17	Location #3 SG 2	ND		2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	ND
Propene	10,400	43,800	2200150-16	Location #3 SG 1	48	J	2200150-17	Location #3 SG 2	60	J	2200150-18	Location #3 SG3	ND		2200150-19	Location #3 SG 4	40 J

Notes:

J Estimated value ND Not detected

SG Soil-gas

UJ Estimated detection limit

VISL Vapor Intrusion Screening Level

All samples ND for analyte

Concentration within order of magnitude of residential VISL

Concentration exceeds residential VISL

ATTACHMENT 1 ENVIRONMENTAL JUSTICE REPORT

EJSCREEN ACS Summary Report

Location: City: Garden City city

Ring (buffer): 0-mile radius

Description: Garden City, Kansas

Summary of ACS Estimates	2015 - 2019
Population	26,296
Population Density (per sq. mile)	3,039
People of Color Population	15,979
% People of Color Population	61%
Households	9,083
Housing Units	9,706
Housing Units Built Before 1950	1,425
Per Capita Income	23,914
Land Area (sq. miles) (Source: SF1)	8.65
% Land Area	100%
Water Area (sq. miles) (Source: SF1)	0.00
% Water Area	0%

70 Water Area			0,0
	2015 - 2019 ACS Estimates	Percent	MOE (±)
Population by Race			
Total	26,296	100%	566
Population Reporting One Race	25,624	97%	1,428
White	20,892	79%	575
Black	949	4%	197
American Indian	95	0%	38
Asian	1,428	5%	254
Pacific Islander	0	0%	10
Some Other Race	2,261	9%	354
Population Reporting Two or More Races	672	3%	242
Total Hispanic Population	13,153	50%	560
Total Non-Hispanic Population	13,142		
White Alone	10,317	39%	229
Black Alone	918	3%	197
American Indian Alone	70	0%	29
Non-Hispanic Asian Alone	1,410	5%	254
Pacific Islander Alone	0	0%	10
Other Race Alone	0	0%	10
Two or More Races Alone	428	2%	125
Population by Sex			
Male	13,629	52%	293
Female	12,667	48%	369
Population by Age			
Age 0-4	2,155	8%	146
Age 0-17	7,695	29%	216
Age 18+	18,600	71%	285
Age 65+	3,067	12%	129

April 15, 2022

EJSCREEN ACS Summary Report

Location: City: Garden City city Ring (buffer): 0-mile radius

Description: Garden City, Kansas

	2015 - 2019 ACS Estimates	Percent	MOE (±)
Population 25+ by Educational Attainment			
Total	15,673	100%	266
Less than 9th Grade	2,725	17%	139
9th - 12th Grade, No Diploma	1,983	13%	164
High School Graduate	3,446	22%	122
Some College, No Degree	3,696	24%	161
Associate Degree	1,212	8%	88
Bachelor's Degree or more	2,611	17%	111
Population Age 5+ Years by Ability to Speak English			
Total	24,141	100%	565
Speak only English	12,799	53%	279
Non-English at Home ¹⁺²⁺³⁺⁴	11,342	47%	422
¹ Speak English "very well"	6,003	25%	348
² Speak English "well"	1,868	8%	142
³ Speak English "not well"	2,566	11%	187
⁴Speak English "not at all"	904	4%	137
3+4Speak English "less than well"	3,470	14%	228
²⁺³⁺⁴ Speak English "less than very well"	5,338	22%	247
Linguistically Isolated Households*			
Total	1,316	100%	113
Speak Spanish	936	71%	110
Speak Other Indo-European Languages	23	2%	58
Speak Asian-Pacific Island Languages	233	18%	46
Speak Other Languages	123	9%	73
Households by Household Income			
Household Income Base	9,083	100%	152
< \$15,000	910	10%	81
\$15,000 - \$25,000	707	8%	80
\$25,000 - \$50,000	2,292	25%	109
\$50,000 - \$75,000	1,779	20%	135
\$75,000 +	3,396	37%	137
Occupied Housing Units by Tenure			
Total	9,083	100%	152
Owner Occupied	5,584	61%	149
Renter Occupied	3,499	39%	125
Employed Population Age 16+ Years			
Total	19,297	100%	388
In Labor Force	13,880	72%	405
Civilian Unemployed in Labor Force	552	3%	74
Not In Labor Force	5,417	28%	159

Data Note: Datail may not sum to totals due to rounding. Hispanic population can be of anyrace. N/A means not available. **Source:** U.S. Census Bureau, American Community Survey (ACS)

*Households in which no one 14 and over speaks English "very well" or speaks English only.

April 15, 2022 2/3

EJSCREEN ACS Summary Report

Location: City: Garden City city

Ring (buffer): 0-mile radius

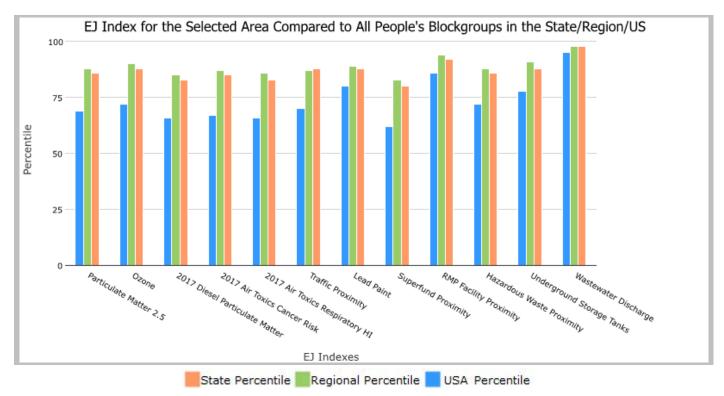
Description: Garden City, Kansas

	2015 - 2019 ACS Estimates	Percent	MOE (±)
pulation by Language Spoken at Home*			
tal (persons age 5 and above)	22,890	100%	503
English	12,251	54%	498
Spanish	8,825	39%	585
French	169	1%	15
French Creole	N/A	N/A	N/A
Italian	N/A	N/A	N/A
Portuguese	N/A	N/A	N/A
German	34	0%	21
Yiddish	N/A	N/A	N/A
Other West Germanic	N/A	N/A	N/A
Scandinavian	N/A	N/A	N/A
Greek	N/A	N/A	N/A
Russian	N/A	N/A	N/A
Polish	N/A	N/A	N/A
Serbo-Croatian	N/A	N/A	N/A
Other Slavic	N/A	N/A	N/A
Armenian	N/A	N/A	N/A
Persian	N/A	N/A	N/A
Gujarathi	N/A	N/A	N/A
Hindi	N/A	N/A	N/A
Urdu	N/A	N/A	N/A
Other Indic	N/A	N/A	N/A
Other Indo-European	0	0%	15
Chinese	155	1%	174
Japanese	N/A	N/A	N/A
Korean	0	0%	15
Mon-Khmer, Cambodian	N/A	N/A	N/A
Hmong	N/A	N/A	N/A
Thai	N/A	N/A	N/A
Laotian	N/A	N/A	N/A
Vietnamese	437	2%	98
Other Asian	488	2%	224
Tagalog	50	0%	87
Other Pacific Island	N/A	N/A	N/A
Navajo	N/A	N/A	N/A
Other Native American	N/A	N/A	N/A
Hungarian	N/A	N/A	N/A
Arabic	139	1%	145
Hebrew	N/A	N/A	N/A
African	N/A	N/A	N/A
Other and non-specified	343	1%	185
Total Non-English	10,639	46%	708
	10,039	40%	100

Data Note: Detail may not sum to totals due to rounding. Hispanic popultion can be of any race. N/A means not available. **Source:** U.S. Census Bureau, American Community Survey (ACS) 2015 - 2019.

*Population by Language Spoken at Home is available at the census tract summary level and up.

April 15, 2022 3/3


EJScreen Report (Version 2.0)

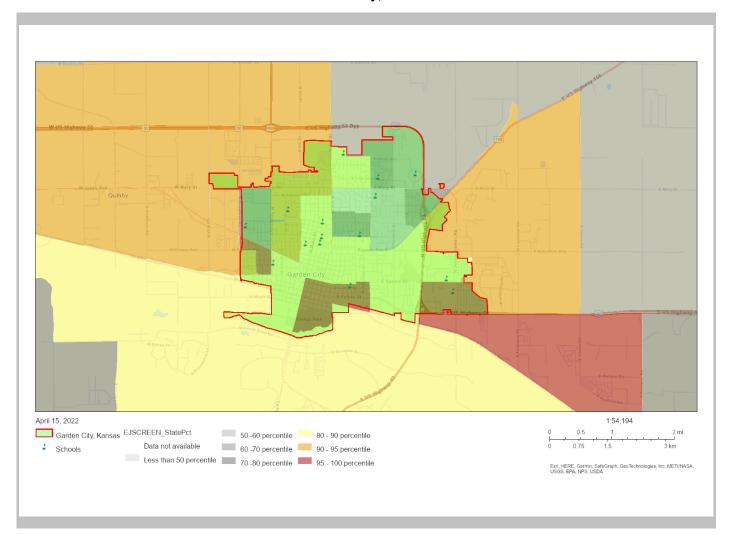
City: Garden, KANSAS, EPA Region 7

Approximate Population: 26,296 Input Area (sq. miles): 8.83 Garden City, Kansas

Selected Variables	State Percentile	EPA Region Percentile	USA Percentile	
Environmental Justice Indexes				
EJ Index for Particulate Matter 2.5	86	88	69	
EJ Index for Ozone	88	90	72	
EJ Index for 2017 Diesel Particulate Matter*	83	85	66	
EJ Index for 2017 Air Toxics Cancer Risk*	85	87	67	
EJ Index for 2017 Air Toxics Respiratory HI*	83	86	66	
EJ Index for Traffic Proximity	88	87	70	
EJ Index for Lead Paint	88	89	80	
EJ Index for Superfund Proximity	80	83	62	
EJ Index for RMP Facility Proximity	92	94	86	
EJ Index for Hazardous Waste Proximity	86	88	72	
EJ Index for Underground Storage Tanks	88	91	78	
EJ Index for Wastewater Discharge	98	98	95	

This report shows the values for environmental and demographic indicators and EJSCREEN indexes. It shows environmental and demographic raw data (e.g., the estimated concentration of ozone in the air), and also shows what percentile each raw data value represents. These percentiles provide perspective on how the selected block group or buffer area compares to the entire state, EPA region, or nation. For example, if a given location is at the 95th percentile nationwide, this means that only 5 percent of the US population has a higher block group value than the average person in the location being analyzed. The years for which the data are available, and the methods used, vary across these indicators. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJSCREEN documentation for discussion of these issues before using reports.

April 15, 2022 1/3



EJScreen Report (Version 2.0)

City: Garden, KANSAS, EPA Region 7

Approximate Population: 26,296 Input Area (sq. miles): 8.83 Garden City, Kansas

Sites reporting to EPA					
Superfund NPL	0				
Hazardous Waste Treatment, Storage, and Disposal Facilities (TSDF)	1				

April 15, 2022 2/3

EJScreen Report (Version 2.0)

City: Garden, KANSAS, EPA Region 7
Approximate Population: 26,296
Input Area (sq. miles): 8.83
Garden City, Kansas

Selected Variables	Value	State Avg.	%ile in State	EPA Region Avg.	%ile in EPA Region	USA Avg.	%ile in USA		
Pollution and Sources									
Particulate Matter 2.5 (μg/m³)	6.8	8.02	5	8.26	3	8.74	10		
Ozone (ppb)	47.4	45.1	97	44.1	89	42.6	85		
2017 Diesel Particulate Matter* (µg/m³)	0.128	0.21	28	0.221	<50th	0.295	<50th		
2017 Air Toxics Cancer Risk* (lifetime risk per million)	20	25	46	26	<50th	29	<50th		
2017 Air Toxics Respiratory HI*	0.2	0.33	12	0.33	<50th	0.36	<50th		
Traffic Proximity (daily traffic count/distance to road)	210	250	69	410	58	710	48		
Lead Paint (% Pre-1960 Housing)	0.23	0.35	46	0.33	48	0.28	57		
Superfund Proximity (site count/km distance)	0.011	0.079	4	0.1	7	0.13	6		
RMP Facility Proximity (facility count/km distance)	1.8	0.99	82	0.95	83	0.75	88		
Hazardous Waste Proximity (facility count/km distance)	0.92	1.2	54	1	64	2.2	54		
Underground Storage Tanks (count/km²)	4.5	3.3	75	2.5	82	3.9	76		
Wastewater Discharge (toxicity-weighted concentration/m distance)	3	1.5	97	2.9	96	12	95		
Socioeconomic Indicators									
Demographic Index	49%	27%	87	25%	89	36%	72		
People of Color	61%	24%	91	20%	92	40%	72		
Low Income	37%	30%	66	30%	66	31%	65		
Unemployment Rate	4%	4%	61	4%	61	5%	47		
Linguistically Isolated	15%	3%	95	2%	97	5%	89		
Less Than High School Education	30%	9%	95	9%	96	12%	90		
Under Age 5	8%	7%	72	6%	73	6%	75		
Over Age 64	12%	15%	35	16%	30	16%	37		

^{*}Diesel particular matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's 2017 Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data Update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

For additional information, see: www.epa.gov/environmentaljustice

EJScreen is a screening tool for pre-decisional use only. It can help identify areas that may warrant additional consideration, analysis, or outreach. It does not provide a basis for decision-making, but it may help identify potential areas of EJ concern. Users should keep in mind that screening tools are subject to substantial uncertainty in their demographic and environmental data, particularly when looking at small geographic areas. Important caveats and uncertainties apply to this screening-level information, so it is essential to understand the limitations on appropriate interpretations and applications of these indicators. Please see EJScreen documentation for discussion of these issues before using reports. This screening tool does not provide data on every environmental impact and demographic factor that may be relevant to a particular location. EJScreen outputs should be supplemented with additional information and local knowledge before taking any action to address potential EJ concerns.

April 15, 2022 3/3